
FAIR Wizard
Release 4.6

FAIR Wizard Team

May 10, 2024

ABOUT

1 Structure of the Guide 3
1.1 Introduction . 4
1.2 Data Management Planner . 13
1.3 Admin Center . 84
1.4 Integration Hub . 107
1.5 Reporting . 111
1.6 Development . 114
1.7 Miscellaneous . 158

i

ii

FAIR Wizard, Release 4.6

The FAIR Wizard is an enterprise-ready and user-friendly application for creating Data Management Plans. It does
not only provide all necessary tools for researchers and data stewards to create data management plans (DMPs) easily,
efficiently, and in a FAIR manner, but it is a suite of tools to incorporate Data Management Planning process with needs
of institutions.

Data stewards can easily capture the knowledge, including required project data and decisions in knowledge models
that are then turned into per-project questionnaires to be filled by researchers. The questionnaires guide researchers
through the process using recommendations, FAIR metrics indications, and only showing relevant questions based on
previous answers.

Once the questionnaire is completed, a DMP can be easily generated using a selected template and output format. The
document is then stored in FAIR Wizard for easy access and future reference. This is especially helpful because many
funding agencies now require a DMP for their application process.

But the benefits of using FAIR Wizard go beyond just creating a DMP. Institutions can use FAIR Wizard to manage
their Data Management Planning processes, using powerful tools provided within the FAIR Wizard. This includes
advanced user management, custom integrations with data and more.

https://youtu.be/oU6z9V4jW0Q

ABOUT 1

https://youtu.be/oU6z9V4jW0Q

FAIR Wizard, Release 4.6

2 ABOUT

CHAPTER

ONE

STRUCTURE OF THE GUIDE

The guide sections are organized into three categories:

• About contains an introduction to the FAIR Wizard and its content to gain quick insight into how it works at a
high level.

• Applications is structured the same way as FAIR Wizard’s applications menu, so it is easy to quickly find the
relevant sections about how to use a specific part of the application:

– Data Management Planner

– Admin Center

– Integration Hub

– Reporting

• More contains all additional information related to FAIR Wizard, such as changelog or development of various
extensions.

Here are some recommended sections where to start based on the role:

Researcher Data Steward Admin
Introduction Introduction Introduction
Overview Overview Overview
Project Knowledge Model

Document Template
Applications Applications Applications
Data Management Planner Data Management Planner Admin Center

Integration Hub Reporting
Features Features Features
Projects Knowledge Models Users
Documents Document Templates User Groups

User Groups Administration
Project Templates Settings
Value Integrations Audit Log
More More
Document Template Development Submission Service
Integration Questions Changelog
Project Importers

3

https://fair-wizard.com/changelog

FAIR Wizard, Release 4.6

1.1 Introduction

This section will cover the essentials of the FAIR Wizard, including its key components and how they operate together
to facilitate effective data management for researchers and data stewards.

1.1.1 Overview

Different components in the FAIR Wizard are connected to create a data management plan and help with data man-
agement in general. Different components are typically made and used by different user roles. Data stewards work on
preparing content (such as knowledge models or document templates) for researchers that they can use to work on
their data management plans while filling in the questionnaires and exporting documents.

Data Management Planner

Data Management Planner is the core of the FAIR Wizard. It enables creation of Data Management Plans (DMPs)
and other documents based on the answers to a questionnaire. The DMPs are created using a knowledge model and
a document template. The knowledge model defines the structure of the questionnaire, and the document template
defines the structure of the resulting document.

Fig. 1: Different components of the FAIR Wizard and roles interacting with them.

4 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Knowledge Model

The knowledge model refers to something like a template for the questionnaire. However, it is not linear but has a
tree-like structure with different branches based on the previous answer. Therefore, even if it can be complex overall,
only the specific questions are used in the questionnaire.

Learn more about knowledge models →

Document Template

While the knowledge model defines the structure of the questionnaire, it does not specify how the resulting document
(such as the DMP) will look. We use document templates for that. They transform the answers into documents such as
PDF, MS Word, or machine-actionable RDF. This way, we can only answer once and produce different documents.

Learn more about document templates →

Questionnaire

A questionnaire is part of a project where researchers fill in their answers regarding their particular research. It uses a
specific knowledge model that defines its structure.

Learn more about questionnaires →

Document

Documents are produced from the questionnaire answers and a document template. The document template understands
the knowledge model structure and knows how to transform the questionnaire answers into a specific document in the
selected format. The documents are saved within a project where they were created from the questionnaire.

Learn more about documents →

Admin Center

The Admin Center is an application in which can administrators manage the FAIR Wizard application. This includes
management of users, their roles and user groups and various imports. It also includes the management of the applica-
tion itself. User groups can also be managed by data stewards.

Users

Users are people who use the FAIR Wizard. They can be researchers, data stewards, or administrators. Each user has
a role that defines what they can do in the application. Users can be organized into user groups.

Learn more about users →

1.1. Introduction 5

FAIR Wizard, Release 4.6

Imports

Imports are used to import data into the FAIR Wizard. This can be used to import users and projects.

Learn more about imports →

Audit Log

Audit Log is a log of all the actions that have been done in the FAIR Wizard. It is used to track changes and actions
done by users.

Learn more about audit log →

Integration Hub

The Integration Hub is an application that is used to create integrations. At the moment it allows creation of Value
Integrations.

Value Integrations

Value Integrations are used to create integrations from data stored in CSV format. These integrations can then be used
in Knowledge Models.

Learn more about value integrations →

Reporting

Reporting is an application that is used to generate reports. Reports can be done on Projects and Users.

1.1.2 Knowledge Model

The knowledge model is a tree-like structure of chapters, questions, answers, and other entities that servers as a template
for the questionnaire. All the different questions, their possible answers and follow-up questions, metrics and more is
defined there.

While all the possibilities are defined in the knowledge model, when researchers use it to create their project, they don’t
see everything, but only the top-level questions and more detailed questions are only asked if relevant to their use case.

Knowledge models are created by data stewards in the knowledge model editor.

Knowledge Model Structure

Knowledge model consists of several entities connected together. You can see how they are connected in the following
diagram and read more details about them below.

6 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 2: Knowledge model schema

1.1. Introduction 7

FAIR Wizard, Release 4.6

Knowledge Model

At the top level, the knowledge model contains chapters, and entities referred to elsewhere from the knowledge model:
metrics, phases, question tags, and integrations.

Chapter

The knowledge model consists of chapters at the top level. Each chapter has a name, a description and a list of
questions. Usually, chapters are used to group the questions on the same topic together.

Question

Questions are used to collect the answers from users. Each question has a title (the actual question), a description, a
phase when it becomes desirable, a list of references and experts, and a selection of question tags.

Then there are some additional settings based on the question type.

Options Question

The options question contains a closed list of answers where users can pick one. Answers can have some follow-
up questions that are only presented to the user when they pick the answer. So the options question can be used for
questionnaire branching.

List Question

The list question is used when there are multiple answers and we want to ask more details about those. For example,
we can ask about different datasets that will be produced – users will have multiple datasets but we want to ask the
same questions for each of those. For that, we configure the item template, which defines the questions for each item.

Value Question

The value question asks for a single value that users type in. There are many different types of the value question that
can be used:

• String

• Number

• Date

• Date Time

• Time

• Text

• Email

• URL

• Color

The input field differs based on the value type (simple input for string, date picker for date, etc.). Some of these have a
check whether the entered value is valid (such as valid email or URL) and displays a warning if not.

8 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Integration Question

The integration question is connected to an external resource where the users can pick the answer from. We need to
select an integration that the question uses and sometimes additional properties, based on the integration configuration.

Users can then search the external resource through the questionnaire and choose the answer. The advantage is that the
answer is not only the text but also a link or PID of the selected item making it more FAIR.

If the desired answer is not present in the external resource, users can still fill in a text answer themselves.

Multi-Choice Question

The multi-choice question has a list of choices. Users can then pick as many of those choices as they wish. There are,
however, no follow-up questions available for this question type.

Answer

An answer is used with options questions. It contains a label which is the answer itself. Then an advice which is
visible only if the answer is selected. We can use this when users pick answer that is not great to provide them further
guidance on how to improve.

Answers can have follow-up questions that are only visible if the answer is selected. We can use this to ask only
relevant questions based on the previous answers.

If there are some metrics created in the knowledge model, we can configure how each answer affects them. The result
for each metric is eventually calculated as a weighted average of all answers affecting that metric. Therefore, we need
to configure:

• weight [0..1] - how important the answer is (0 = not important at all, 1 = very important)

• measure [0..1] - how it affects the metric (0 = bad, 1 = good)

Choice

A choice is used with multi-choice questions. It only contains a label which is presented to the user.

Reference

We can provide some additional references for questions to help users better understand it or learn more details. There
are more types of references.

URL Reference

A URL reference is a simple link to any website. It has URL which is the actual link and a label that describes what
the reference is about.

1.1. Introduction 9

FAIR Wizard, Release 4.6

Book Reference

Warning: Book references are deprecated.

Resource Page Reference

Warning: Resource page references are not yet implemented.

Expert

We can provide a contact information to an expert for some questions. An expert has a name and an email. We can
use this, for example, if there is an expert for a specific topics in our institution and we want to make it easy to find out
in our customized knowledge model.

Metric

We can define metrics for each knowledge model based on our needs. Each metric has a title, an abbreviation, and a
description. Once the metric is defined, we can configure which answers affect it and how.

This can be use, for example, to define the FAIR metrics:

• F - Findability

• A - Accessibility

• I - Interoperability

• R - Reusability

And then define which answers affect which FAIR metrics to provide more feedback to the researchers.

Phase

We can create phases to reflect the workflow. Such as: Before submitting the proposal, Before submitting the DMP,
etc. Each phase has a title and a description.

Once we have phases defined, we can assign them to questions to indicate where each question become desirable. The
phases implicitly follow the order in which they are in the knowledge model and the question is considered desirable
from the defined phase and on. So for example, if a question is desirable in Phase 2, it is implicitly desirable in Phase
3, Phase 4, etc.

10 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Question Tag

We can define question tags on the knowledge model and then assign them to different questions. This can be used to
group together questions on the same topic or for the same purpose.

When researchers create a new project from the knowledge model, they can only choose the question groups they are
interested in for their research. Selection of question tags is done in custom project creation So we can use this to create
a very rich knowledge model but researchers will be able to use only the parts relevant to them.

Integration

Integrations define a connection to an external service or resource where we can get the answers from. They are used
with integration questions. For each integration we configure some basic information, such as ID, Name, or Logo
URL. Other configuration varies based on the integration type. More information about how to configure integration
is available under the integration questions documentation.

API Integration

API integration connects to an external service API to search for the answers. We need to provide some request and
response configuration, so FAIR Wizard can use the API.

Widget Integration

Widget integration doesn’t use an API but a widget implemented using the DSW Integration SDK. Then we need to
configure the widget URL where the widget is deployed.

Annotations

Annotations are arbitrary key value pairs that can be assigned to any entity in the knowledge model. These can provide
some additional information for the document templates.

Knowledge Model Customizations

A knowledge model doesn’t have to be created from scratch. Instead, it can be created as a customization of an existing
knowledge model.

We can choose any existing knowledge model and customize it to our needs. We can add, modify, or remove any
entities. If there are newer changes in the parent knowledge model, it is possible to get them into our child knowledge
model using the knowledge model migration.

1.1. Introduction 11

https://github.com/ds-wizard/dsw-integration-sdk

FAIR Wizard, Release 4.6

1.1.3 Document Template

Document templates transform the answers from a questionnaire to a document of a specific format. The document
template usually follow some standard template, such as Horizon Europe DMP, and can support different formats, such
as PDF or MS Word. The formats can be basically any text-based format, so it can also be for example a JSON or
XML. It follows that we can easily use them to crate a machine-actionable output, too.

Fig. 3: Document templates can transform the answers from questionnaires to different formats, such as human-readable
PDF or machine-actionable JSON.

It is important to note that the document template always defines which knowledge models it is compatible with because
in order to transform the answers to the document it needs to understand what the questions are and how the answers
should be composed into a document.

We can get existing document templates in the FAIR Wizard Registry, or create our own using document template editor
or DSW Template Development Kit (TDK).

1.1.4 Project

A project is a central part of where we work on our data management plans. It is based on a knowledge model and uses
one or more document template for generating documents.

Projects are fully collaborative, so we can share them with other researchers and work together.

Questionnaire

The questionnaire is part of the project where we fill in our answers. It is generated based on the selected knowledge
model. It shows only the questions that are relevant based on our previous answers. There are many more features to
provide guidance and embrace collaboration, such as FAIR metrics, comments, TODOs, or version history.

Learn how to work with the questionnaire →

12 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Documents

The outcome of our endeavors in FAIR Wizard should be the data management plan, the document. Once we have
enough answers to the questionnaire, we can generate a document using a document template. These documents are
saved within the project. We can create as many as we wish with different document templates and formats. We can
also set up a default document template for the project and quickly see a preview of the document.

Learn how to work with the documents →

1.2 Data Management Planner

Data Management Planner is an application for collaborative and effective creation of Data Management Plans. This
application is mainly used for creating Data Management Plans by researchers, but it also includes creation and editing
of Knowledge Models and creation and editing of Document Templates done by data stewards.

1.2.1 Knowledge Models

This section covers how to manage existing knowledge models and how to create new ones and make them available
for researchers.

Knowledge Model List

As data stewards and admins, we can manage the knowledge models that are in our FAIR Wizard. Then, researchers
are using and browsing the knowledge models. We can access the list of knowledge model from the main menu via
Knowledge Model. The list can be filtered and sorted by name or creation date.

For each knowledge model (KM), we can see the latest version in the list. If we want to read more about a specific KM
or see the older versions, we need to access the Knowledge Model Detail by clicking the name of KM or clicking Open
from the right item menu (three dots). There are also other options for each item:

• Preview to see how Projects generated using this KM would look like.

• Export for exporting the latest version of the KM as a file.

• Create KM editor is a shortcut for Create Knowledge Model Editor for creating a new version.

• Fork KM is again a shortcut for Create Knowledge Model Editor for to create a fork (some more specific KM
based on this one).

• Create project is a shortcut to Create Project with this KM.

• Set deprecated or Restore for setting a KM deprecated when we no longer want the researchers to use it.

• Delete for all versions of the KM (possible only if is not used in any projects or linked in other KMs and editors).

Note: The options in the item menu are based on the role of a current user, e.g. a researcher cannot create KM editor.

For data stewards and admins, update available may appear if there is a newer version of the knowledge model in the
FAIR Wizard Registry (and if configured).

Finally, there is an option to Knowledge Model Import by click the Import button in the top right part of the screen.

1.2. Data Management Planner 13

https://registry.fair-wizard.com/

FAIR Wizard, Release 4.6

Fig. 4: List of all knowledge models with actions.

Knowledge Model Import

We can import an existing knowledge model by navigating to Knowledge Model List (Knowledge Models) in the main
menu and then clicking on Import button.

From FAIR Wizard Registry

The FAIR Wizard is connected to the FAIR Wizard Registry. That allows us to import knowledge models from it
by entering the knowledge model ID of desired template (e.g. dsw:lifesciences:2.6.3) and pressing the Import
button.

Note: In case of knowledge model present in the FAIR Wizard Registry, we will be notified about the available
upgrades.

14 Chapter 1. Structure of the Guide

https://registry.fair-wizard.com/
https://registry.fair-wizard.com/

FAIR Wizard, Release 4.6

Fig. 5: Input for importing a knowledge model from FAIR Wizard Registry.

From file

We can import a knowledge model as a KM file. Such a file can be created as an export from FAIR Wizard (from
Knowledge Model List or Knowledge Model Detail).

Knowledge Model Detail

We can visit a knowledge model detail by clicking on a desired KM in the Knowledge Model List (or selecting View
detail from the right item menu). The detail shows basic information about the knowledge model such as its name, ID,
version, license, metamodel version, or (if applicable) what is the parent knowledge model.

The main part of the detail is the README of the KM that should contain basic information and changelog. In the
right panel under the basic information, we can navigate to other versions of the KM or navigate to the FAIR Wizard
Registry (if the KM is present there).

In the top bar, we can Export the knowledge model as a KM file or Delete this version of the knowledge model (only
if it is not already used for some projects or other KMs and editors).

In the top pane, we can see the options based on our role:

• Preview can be used to check the content of the KM via the Knowledge Model Preview feature.

• Export for exporting the latest version of the KM as a file.

• Create KM editor is a shortcut for Create Knowledge Model Editor for creating a new version.

• Fork KM is again a shortcut for Create Knowledge Model Editor for to create a fork (some more specific KM
based on this one).

• Create project is a shortcut to Create Project with this KM.

• Set deprecated or Restore for setting a KM deprecated when we no longer want the researchers to use it.

1.2. Data Management Planner 15

https://registry.fair-wizard.com/
https://registry.fair-wizard.com/

FAIR Wizard, Release 4.6

Fig. 6: Input for importing a knowledge model using a KM package.

16 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

• Delete the specific version of the KM (possible only if is not used in any projects or linked in other KMs and
editors).

If we are not seeing the latest version of the KM, a warning message is shown in the top. Similarly, we will see a
notification that update is available if there is a newer version in the FAIR Wizard Registry (if configured).

Fig. 7: Detail of a knowledge model.

Knowledge Model Preview

The preview feature for knowledge models allows us to check the content, i.e. how the questionnaire looks like. It can
be used to navigate just through the top-level questions. However, with a know UUID of the question, we can create a
direct link to a certain question:

For a nested question, all needed question above in the tree will be automatically prefilled. The KM preview may be
also available to non-logged-in users, if configured by administrators in Knowledge Models Settings.

A user can directly create a new project from the KM preview. Again, this can be available also for non-logged-in users
if anonymous projects are enabled by administrations in Projects Settings.

1.2. Data Management Planner 17

https://registry.fair-wizard.com/

FAIR Wizard, Release 4.6

Knowledge Model Editors

Here, we can see a list of all knowledge model editors. Everyone with the data steward role assigned can see all the
knowledge model editors.

Fig. 8: List of knowledge model editors.

We can use the search field to search for a specific KM editor. The editors are sorted by when they were last updated
but we can change that.

We can create a new knowledge model editor by clicking the Create button.

By clicking the triple dots on each of the item in the list we can access some actions:

• Open Editor - simply open the editor detail

• Upgrade - if there is a newer version of parent knowledge model, we can use upgrade action to start a knowledge
model migration, otherwise the action is not visible

• Publish - to publish a new version of the knowledge model

• Delete - to delete the knowledge model editor (cannot be undone)

If there is an ongoing knowledge model migration, there are different actions:

• Continue migration

• Cancel migration

Create Knowledge Model Editor

We can create a new knowledge model editor by navigating to Knowledge Models → Editors in the main menu and
then clicking the Create button.

Every knowledge model needs to have a name, a knowledge model ID and version. The name should be something
descriptive to help users understand what the knowledge model is about. The knowledge model ID is used for the
identification together with the organization ID and knowledge model version after it is published. So the identifier of
the knowledge model is:

<organizationId>:<knowledgeModelId>:<version>

We can create a new project either from scratch, i.e. the new knowledge model will be empty and we will build it all
ourselves, or based on an existing knowledge models, which means that everything from the chosen knowledge model
will be copied to ours. We can start from there and add, delete, or modify the existing entities in there. We just need
to choose the original knowledge model in the based on field. Alternatively, we can open the knowledge model detail
and click on Fork KM there.

18 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 9: Form for creating a new knowledge model.

1.2. Data Management Planner 19

FAIR Wizard, Release 4.6

We can only have one knowledge model editor with the same knowledge model ID. If we deleted the editor but want
to continue working on that knowledge model, we can create a new editor with the same knowledge model ID. Or we
can open the knowledge model detail and click on Create KM editor there to have the editor create form prefilled.

Knowledge Model Editor

Knowledge model editor is where we build knowledge models. In this section, we will see what entities we can add
there, how they are connected, how to work with the editor and how to publish the knowledge model.

Fig. 10: Knowledge model editor.

20 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Knowledge Model

The Knowledge Model tab is where we work on the entities (such as questions or answers) that appear in the knowledge
model. We define the structure here.

Navigation

In the top row, we can see the breadcrumbs that show us where we are within the knowledge model. This allows us to
quickly jump back up in the hierarchy.

On the lefthand side of the editor, there is a navigation tree reflecting the structure of the knowledge model. We can
click on the arrows to expand or collapse individual entities, or click on Expand all or Collapse all. By clicking on the
entity name, we open its editor.

Fig. 11: Knowledge model editor navigation.

Tip: There is no search, however, if we want to quickly find an entity by name we can click on Expand all in the
navigation tree and use search functionality of our web browser.

1.2. Data Management Planner 21

FAIR Wizard, Release 4.6

Editors

The main area of the Knowledge Model tab is the actual editor. The form fields change based on the entity we edit, but
there are some shared actions:

Fig. 12: Editor action buttons.

• Copy UUID - every entity has a generated UUID, we can use this button to copy it. We usually need it for
document template development.

• Move - we can move entities around the knowledge model. However, not every entity can be put under everything.
We can open the move modal window and see where the current entity could be move to.

• Delete - delete is simply used for deleting the entities. This action cannot be undone, so we need to be careful
what we delete.

There are different entities we can edit in the knowledge model, the editor shows different fields based on what we edit:

• Knowledge Model

• Chapter

• Question

• Answer

• Choice

• Reference

• Expert

• Metric

• Phase

• Question Tag

• Integration

Besides their own fields, each entity has so called Annotations. They are arbitrary key value pairs that can be assigned
to the entity and used later, when developing a document template.

Warnings

The editor checks for some possible problems, such as empty title for a chapter or no answers for an options question.
If there are any, the Warnings tab appear and we can quickly navigate to those problems and fix them.

22 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 13: Example of question editor form.

Fig. 14: Warnings in the knowledge model editor.

1.2. Data Management Planner 23

FAIR Wizard, Release 4.6

Phases

If there are any project phases set up in the knowledge model, we can use the Phases tab to see an overview of which
questions were assigned to be completed in each phase and to change the phase assignments.

We can simply click to the checkbox in the corresponding phase - question table cell to assign/unassign the phase to
that particular question.

Fig. 15: Phases editor where we can assign questions to phases.

Question Tags

If there are any question tags set up in the knowledge model, we can use the Question Tags tab to see the overview of
what questions were these tags assigned to, and to assign the question tags to the questions.

We can simply click to the checkbox in the corresponding question tag - question table cell to assign/unassign the
question tag to that particular question.

24 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 16: Question tag editor where we can assign question tags to questions.

1.2. Data Management Planner 25

FAIR Wizard, Release 4.6

Preview

We can use Preview tab to quickly see how the resulting questionnaire would look like. If there are any question tags
set up, we can also try different combinations of selected tags and observe the changes in the questionnaire.

Fig. 17: Preview of the resulting questionnaire in the knowledge model editor.

Settings

The Settings tab, allows us to adjust atributes of the the knowledge model:

• Name - should be short name of the Knowledge Model.

• Description - this should be really short and descriptive.

• Knowledge Model ID - is an unique Knowledge Model identifier.

• Version - this is a number indicating which is the latest version of the Knowledge Model, because it can change
over time.

• License - this is used when we want to share the knowledge model with other people so they know how they can
do that. We recommend using a license identifier from SPDX Licens List.

• Readme - this is where we can describe everything we need about the knowledge model. We can, for example,
include a changelog of what changed in which version, etc. We can use Markdown in this field to provide some
nice formatting.

Note: Name, Description and Version are all visible to the researcher, when they select a Knowledge Model for their
project. So the Name and Description should provide them with enough information to select a correct one.

26 Chapter 1. Structure of the Guide

https://spdx.org/licenses/

FAIR Wizard, Release 4.6

Knowledge Model ID together with the organization ID and knowledge model version after it is published are used
for the identification. So the identifier of the knowledge model is:

<organizationId>:<knowledgeModelId>:<version>

For the version number we recommended using similar approach as in semantic versioning. So when we have a ver-
sion <major>.<minor>.<patch>, change in the major version number indicates some breaking changes (deleting
questions, significant changes in the questionnaire structure, etc.), change in minor version number indicates some new
changes that are backwards compatible (i.e., adding a new question), and change in the patch version number indicate
some fixes (such as fixing some typos).

If the knowledge model was based on another knowledge model, we can also see the Parent Knowledge Model in the
settings.

In the Danger Zone we can delete the knowledge model. Once it is deleted it can no longer be recovered.

Fig. 18: Knowledge Model settings.

1.2. Data Management Planner 27

https://semver.org

FAIR Wizard, Release 4.6

Publish

Before the knowledge model can be used by researchers in their projects, we need to publish it. We can do that by
clicking the Publish button in the top right corner of the Knowledge Model Editor.

If we click the button, we are prompted with the metadata details to check them before publishing. We cannot change
anything here, so if we want to change it, we have to press Cancel and edit the details on the Settings tab of the Knowledge
Model Editor.

Fig. 19: Publish dialog where we can confirm or cancel publishing of the Knowledge Model.

If we confirm the publishing of the Knowledge Model by clicking Publish in the modal window, the Knowledge Model
becomes available to all users and is accessible in Knowledge Model List.

The Knowledge Model Editor will remain in the Knowledge Model Editors list and will be available for any future
changes.

28 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Knowledge Model Migration

Knowledge model can be created either from scratch or based on existing one and further modified. If that happened,
we can call the original Parent KM and the modification Child KM. We can create the Child KM any published
version of the Parent KM, make some modification and publish a version of the Child KM. However, the Parent KM
can evolve, and at some point we might want to have those changes in our Child KM, too.

That is what the knowledge model migration is for. Once a new version of the Parent KM is published, we can start
the KM migration where we go through these changes. We can choose whether we want to apply or reject these
modification to our Child KM during migration. At the end, we publish a new version of the Child KM with all the
selected changes.

Fig. 20: Schematic representation of KM migration.

Creating a Knowledge Model Migration

We can start the knowledge model migration from the list of knowledge model editors. If there is a newer version of the
Parent KM available for particular knowledge model editor, we can see the update available badge next to the name of
the editor.

Fig. 21: Badge indicating that there is a newer version of the Parent KM.

We can either click on the badge directly, or choose Upgrade option from the dropdown menu. It will open a modal
window where we can choose a new version of the Parent KM that we want to migrate our Child KM to. Usually, we
want to pick the latest.

1.2. Data Management Planner 29

FAIR Wizard, Release 4.6

Fig. 22: Modal window to create a new knowledge model migration.

Knowledge Model Migration

During the migration, we can see all the changes one by one and can choose whether we want to Apply or Reject the
change. We can also choose to Apply all if we simply want everything.

Cancelling a Knowledge Model Migration

We can cancel the knowledge model migration at any point before we publish the new version of the Child KM. We
need to navigate to the list of knowledge model editors and choose Cancel migration from the dropdown menu for the
desired KM editor.

Finishing a Knowledge Model Migration

After we resolve all the changes, we are ready to publish the new version of the Child KM. To do that, we need to
click on the Publish → button. This will open the Publish new version screen where we need to provide additional
information for the new version of the Knowledge Model.

The publish screen shows us some information about the knowledge model, such as it’s Knowledge Model Name and
Knowledge Model ID. We need to choose the new version number.

Note: We recommended using similar approach as in semantic versioning. So when we have a version <major>.
<minor>.<patch>, change in the major version number indicates some breaking changes (deleting questions, signifi-
cant changes in the questionnaire structure, etc.), change in minor version number indicates some new changes that are
backwards compatible (i.e., adding a new question), and change in the patch version number indicate some fixes (such
as fixing some typos).

Then we need to add some additional metadata (these fields are pre-filled if there was a previous version published):

30 Chapter 1. Structure of the Guide

https://semver.org

FAIR Wizard, Release 4.6

Fig. 23: During the migration we can apply or reject the changes form the Parent KM.

• License - this is used when we want to share the knowledge model with other people so they know how they can
do that. We recommend using a license identifier from SPDX Licenses List.

• Description - this should be really short and descriptive. It is used, for example, in select boxes when creating
a new project to help researchers choose the best knowledge model for their use case.

• Readme - this is where we can describe everything we need about the knowledge model. We can, for example,
include a changelog of what changed in what version, etc. We can use Markdown in this field to provide some
nice formatting.

1.2.2 Document Templates

This section is about managing the document templates and document template editors. Similarly to Knowledge Mod-
els, we can manage Document Template List or work on new or customize existing templates using Document Template
Editors.

1.2. Data Management Planner 31

https://spdx.org/licenses/

FAIR Wizard, Release 4.6

Document Template List

As data stewards and admins, we can check and manage all document templates from the list accessible from the
main menu via Document Templates. The list can be filtered and sorted by name.

For each document template, we can see the latest version present; however, we can see all the versions by accessing the
Document Template Detail by clicking the name of the template or via View detail from the right dropdown item menu.
The dropdown menu also offers Export of the latest document template or Delete of entire template (all its versions).

Note: A document template can be deleted only if it is not used already for documents, projects, or settings.

Each item may be marked with unsupported metamodel when the document template is not compatible with the version
of FAIR Wizard. Metamodel Schemas are used to define structures that developers can interact with. If the template
originates from the FAIR Wizard Registry, update available will appear.

If your template is not from the registry, you will have to Publish a new version via template editor, which will increase
the metamodel version automatically.

Finally, we can use Import new document templates by clicking the top right button (see Document Template Import
for details).

Fig. 24: List of all document templates with actions.

32 Chapter 1. Structure of the Guide

https://registry.fair-wizard.com/

FAIR Wizard, Release 4.6

Document Template Import

We can import an existing document template by navigating to Document Template List (Document Templates) in the
main menu and then clicking on Import button on the list of document templates.

From FAIR Wizard Registry

The FAIR Wizard is connected to the FAIR Wizard Registry. That allows us to import document templates from it by
entering the document template ID of desired template (e.g. dsw:questionnaire-report:2.11.0) and pressing
the Import button.

Note: In case of document templates present in the FAIR Wizard Registry, we will be notified about the available
upgrades.

Fig. 25: Input for importing a document template from FAIR Wizard Registry.

From file

We can import a document template as a ZIP package. Such a package can be created as an export from FAIR Wizard
or using the Template Development Kit (see Document Template Development).

1.2. Data Management Planner 33

https://registry.fair-wizard.com/
https://registry.fair-wizard.com/

FAIR Wizard, Release 4.6

Fig. 26: Input for importing a document template using a ZIP package.

34 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Document Template Detail

We can check a document template detail by clicking on a desired template in the Document Template List (or selecting
View detail from the right dropdown). The detail shows basic information about the template such as its name, ID,
version, license, metamodel version, or supported document formats.

The main part of the detail is the README of the template that should contain basic information and changelog for the
template. In the right panel under the basic information, we can navigate to other versions of the document template,
navigate to the FAIR Wizard Registry (if the template is present there), or check compatible knowledge model with the
template.

In the top bar, we can Export the template as a ZIP package or Delete this version of the template (only if it is not
already used for some documents). We can also quickly navigate to Create Document Template Editor by clicking
Create editor; it will prepare editor creation for a new version of this document template. Finally, there is the possibility
Set deprecated which will change the state of the document template so it is no longer usable by researchers in their
projects (it becomes unavailable).

If we are not seeing the latest version of the template, a warning message is shown in the top. Similarly, we will see a
notification that update is available if there is a newer version in the FAIR Wizard Registry (if configured).

Fig. 27: Detail of a document template.

1.2. Data Management Planner 35

https://registry.fair-wizard.com/
https://registry.fair-wizard.com/

FAIR Wizard, Release 4.6

Document Template Editors

On this page, we can see a list of all document template editors. Everyone with the data steward role assigned can see
all the document template editors and use them.

We can use the search field to search for a specific document template editor. The editors are sorted by when they were
last updated but we can change that.

We can Create Document Template Editor by clicking the Create button.

By clicking the triple dots on each of the item in the list we can access some actions:

• Open Editor - simply open the Document Template Editor (we can also click the name of the editor)

• Delete - to delete the document template editor (cannot be undone)

Fig. 28: List of document template editors with actions.

Create Document Template Editor

We can create a new document template editor by navigating to Document Templates → Editors in the main menu and
then clicking the Create button.

Every document template needs to have a Name, a Document Template ID and version. The name should be some-
thing descriptive to help users understand what the document template is about. The Document Template ID is used
for the identification together with the organization ID and document template version that we have to fill as a New
Version. So the identifier of the document template is:

<organizationId>:<documentTemplateId>:<version>

36 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 29: Form for creating a new document template editor.

1.2. Data Management Planner 37

FAIR Wizard, Release 4.6

We can create a new editor either from scratch, i.e. the new document template will be empty and we will build it all
ourselves, or based on an existing document template, which means that everything from the chosen document template
(files as well as configuration) will be copied to ours. We just need to choose the original document template in the
Based on field. Alternatively, we can click on Create editor from Document Template Detail.

We can only have one document template editor with the same document template ID. If we deleted the editor but
want to continue working on that document template, we can create a new editor with the same document template ID.
Alternatively, we would have to use a different document template ID.

Document Template Editor

A document template editor allows us to edit both configuration and all files of a document template. We can manage
the configuration (such as template metadata, formats, and steps) on the Settings tab. The files including directories
can be managed (created, edited, deleted, or uploaded) on the Files tab. Finally, the Preview tab allows us to quickly
check how the document template works for a certain project and format and how the resulting document looks like.

There is also option to Publish the document template via Publish buttom in the top right corner.

Fig. 30: Document template editor.

38 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Files

The Files tab in Document Template Editor allows us to manage the files and directories (or folders) of the document
template. There is a file tree on the left side whereas the main part is containing the built-in text editor. We can create a
new folder or text file by clicking Add on the of top the file tree and then File or Folder. Once we enter a desired name,
the folder or file is created in the active directory. Alternatively, we can upload a file by clicking Add and then Upload.

If we select a text file in the file tree, it is opened in the built-in text editor. We can also open multiple files (the editor
supports tabs). Moreover, if we have more files opened, we can see a split view icon on the top of the file tree. When
we click it, it will split the view and move the opened file to the other group. If there are already two groups, it switches
the file between the two groups. We can close the file by clicking cross icon in its tab.

We can easily delete a file or a folder; when it is selected in the file tree, we can simply click the red trash icon above
the file tree. The deletion must be confirmed in the prompt so we will not delete something by accident as it is not
reversible operation.

If we make some changes in a file, the asterisk (or star) symbol will appear by the name in the tree view as well as in the
tab (if opened). The changes must be then saved using Save button or discarded using Discard button in the top right
corner. Those buttons will appear instead of Publish as it is not possible to publish a document template with unsaved
changes. After saving the changes and switching to Preview (or refreshing it), the document will be re-generated using
the newly changed document template.

Fig. 31: Files editor with tabs and split view.

1.2. Data Management Planner 39

FAIR Wizard, Release 4.6

Preview

The Preview tab of Document Template Editor allows us to quickly check how our document template works and how
the resulting document looks like for a selected project and document format. We can select any Project that we are
allowed to view. Then, we select the desired Format (one of those specified on the Settings tab of the editor). Any
change in the template configuration and its files will trigger re-generation of the preview (we can simply click the
Preview tab again).

Fig. 32: Preview in a document template editor (without selected Project and Format).

Note: A good practice is to open the document template editor in a different browser tab than editor opened on the
Files or Settings tab. Moreover, we can also open the project that we use for preview.

Settings

The Settings tab of Document Template Editor allows us to adjust the configuration and metadata of the document
template. It is split to the following three parts:

General

This part allows us to change the metadata about the document template:

• Name should be short name of the template.

• Description should be short and descriptive (users will see it while selecting a document template).

• Template ID is the document template ID (as explained for Create Document Template Editor).

• Version of the document template.

• License should contain a name of used license (e.g. Apache-2.0 or unlicensed).

• Readme can contain a longer description, acknowledgements, notes how to use the template, links to resources,
and a changelog.

40 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Knowledge Models

We can specify here what knowledge models are compatible with our document template. This is useful to capture if
our template is usable only with a certain knowledge model(s) which will guarantee us some content (specific chapters,
questions, answers, etc.). For each entry, we are prompted to specify the Organization ID, Knowledge Model ID,
Min Version, and Max Version. Any of these value can be left empty which means any value.

For example, if we set Organization ID to fw, Knowledge Model ID to root, Min Version to 2.4.0 and leave Max
Version empty, it will mean knowledge model fw:root:2.4.0 and any higher version. So that example would work for
fw:root:2.4.4 or fw:root:2.5.0 but not for fw:root:2.3.0 nor acme:base-km:2.6.0

Fig. 33: Allowed knowledge models specification for a document template.

Formats

Each document template can support multiple file formats and users will be able to select which one they want to use
to generate (or preview a document). We can add a new format by clicking Add button. Then, each format must have
a Name and Icon (by using Font Awesome).

Each format has some steps which capture how a file for that format is produced. There are different steps defined such
as json, jinja2, pandoc, or wkhtmltopdf which is used as its Name. Then, the step may have certain configuration
Options. For example, jinja2 must have content-type, extension, and template specified. All the possible
steps and their options are further described in the Document Template Development.

Publish

Once we are ready with our document template in the editor, we can publish a new version by using the Publish button
located in the top right corner of Document Template Editor. If we click the button, we can check the metadata details
and confirm the publishing. We cannot change anything here, so if we want to make some changes, we have to press
Cancel and edit the details on the Settings tab of the Document Template Editor.

If we confirm the publishing of the document template by clicking Publish in the modal window, the document template
becomes available to all users and is accessible in Document Template List. Moreover, the document template editor
disappears (as the state of the document template changed). If we want to directly continue in developing a new version,
we have to Create Document Template Editor.

1.2. Data Management Planner 41

https://fontawesome.com/v5/search

FAIR Wizard, Release 4.6

Fig. 34: Markdown format specification with jinja step.

42 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 35: Confirmation of document template publishing.

1.2. Data Management Planner 43

FAIR Wizard, Release 4.6

1.2.3 Projects

This section is about projects – how to create them, how to work and collaborate on them, how to generate documents,
how to upgrade projects, what are the project templates and more.

Projects are mainly used by the researchers. We have the introduction video about how to create project, fill the
questionnaire and get the documents.

https://youtu.be/usCrhfG_OXE

Project List

In the project list, we can see a list of all projects we have access to. Those are the projects where we were assigned to
with any role or that are visible by all other logged-in users in the project sharing settings. The projects are filtered to
those we are explicitly assigned to by default.

Fig. 36: Project list with filters.

We can search for specific projects using the search field or filter them using additional filters:

• Project Template - if we want to see only project templates or regular projects

• Project Tags - show only the projects that has specific tags assigned

• Knowledge Models - show only the projects created from a specific knowledge model

• Users - filter only the projects with specific users assigned to them

Note: Note that some of the filters can be disabled based on the FAIR Wizard settings or user role.

We can create a new project by clicking the Create button.

By clicking the triple dots on each of the item in the list we can access some actions:

• Open project - will simply open the project

• Create project from this template - will create a new project from the selected project template (this is only
available if the project is also a project template)

• Clone - will create the exact copy of the project

• Create migration - will start a project migration

• Delete - will delete the project (this action cannot be undone)

If there is an ongoing project migration, there are different actions:

• Continue migration - to come back to the ongoing project migration

• Cancel migration - to cancel the ongoing project migration

44 Chapter 1. Structure of the Guide

https://youtu.be/usCrhfG_OXE

FAIR Wizard, Release 4.6

Create Project

We can create a new project by navigating to Projects in the main menu and then clicking on Create button on the
project list.

Note: If we have Researcher role we also have a Create Project widget on our dashboard right after logging in. We
can click on Create button there, too.

Based on our configuration, we can create the new project from a project template, custom, or both.

Fig. 37: Different options how to create a project.

1.2. Data Management Planner 45

FAIR Wizard, Release 4.6

From Project Template

There are many options how to create and configure a project, such as what knowledge model or document template
to use. Project templates are prepared projects by data stewards with possibly pre-selected knowledge models and
document templates, they can have some pre-filled answers, comments and TODOs as well.

So creating such templates can be used by our researchers to have a smoother start of project. We just need to give our
project a name and choose the project template from offered options.

Custom

If there are no project templates available or we don’t want to use them, we can choose to create a custom project. We
need to give our project a name again, but this time we choose a knowledge model from offered options.

If the knowledge model has question tags, we can either choose to create questionnaire with all available questions or
filter them by the question tags.

This will create an empty project with only the selected knowledge model and we need to configure everything (such
as a document template) ourselves.

Project Detail

Project detail is where we work on our data management plan. In this section, we explore different features from filling
in the answers to collaborating with other people or generating documents.

Questionnaire

Questionnaire is the first tab of the project detail. This is the most important part where we fill in all the details about
our project.

Current Phase

If the knowledge model we use for the project has phases defined, we can see a phase selection in the questionnaire
detail. Different questions become desirable based on the selected phase. For example, some should be answered
before submitting the proposal, while others can be filled later.

By clicking the phase selection we open the modal window where we can choose the current phase.

We can see the desirability of questions based on the phase we are currently in. We can also see the number of questions
that still need to be answered in this phase for each chapter in the chapter list.

There are three desirability states the question can be in:

• red, with a pen icon - this question must be answered in the current phase

• light grey, with an hourglass icon - this question will have to be answered in some later phase

• green, with a checkmark icon - this question has already been answered

Note: If there is no phase defined on the knowledge model, the current phase selection is not visible in the questionnaire
detail.

46 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 38: Creating custom project with question tag selection.

1.2. Data Management Planner 47

FAIR Wizard, Release 4.6

Fig. 39: Project detail opened on the questionnaire page.

Fig. 40: Phase selection widget.

48 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 41: Phase selection modal window.

1.2. Data Management Planner 49

FAIR Wizard, Release 4.6

Chapters

Below the current phase selection, we have a list of chapters. We can see the number of questions that are yet to be
answered in current phase (or overall if there are no phases defined in the knowledge model). We can use this list to
navigate freely between chapters.

For the opened chapter, we can see a navigation tree for the chapter structure, showing the questions, follow-up ques-
tions, items, etc. We can use this tree to quickly navigate to a specific question in the chapter.

Fig. 42: Chapter list showing the also the questions for the opened chapter.

Questionnaire Area

The questionnaire area fills the most space in the questionnaire screen. It displays the questions and answers from the
opened chapter.

Each question has an identifier which indicates the chapter it belongs to, as well as its order and nesting within the
chapter. For example, I.1.a.5, where the Roman numeral represents the number of the chapter, and the remaining
numbers indicate the order and nesting of the question. Then there is also the question name.

Some additional information can also be part of the question:

50 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

• Question tags - can indicate some additional grouping of questions, for example what DMP templates is this
question used for

• Description - additional information explaining the question

• Desirability - what phase this question become desirable in

• List of references - links to additional external resources related to the question

• List of experts - whom to contact when help is needed with answering the question

Based on our role in the project and specific settings, there are some additional actions besides answering the question:

• Add TODO

• Add comment

• Provide feedback for the question

We can get more information on how various collaboration tools work and can be used in Sharing.

The most important part is, however, answering the question. The way of how to answer the question differs based on
the question type.

The following video tutorial explains questions and different question types in more detail.

https://youtu.be/jdKooHVZEhI

Options Question

Options question has a list of pre-set answers and we can choose one from those. There can be some follow-up questions
(indicated by the icon by the answer). These questions are displayed only if we select that answer.

If there are some metrics set for the answers, we can see labels with the metrics by the answer as well. The color of the
label indicates how good or bad the answer is (red means bad, green good, yellow something in between).

Fig. 43: Options question with a closed set of answers.

1.2. Data Management Planner 51

https://youtu.be/jdKooHVZEhI

FAIR Wizard, Release 4.6

List Question

List question doesn’t have a simple answer but a list of items. Each of the items has the same set of subquestions. For
example, a list question asking about the project contributors where each item represent one contributor with questions
about their name, role, etc.

We can simply click on Add button under the question to add a new item. Then, we can answer the questions for the
item. If the item has a lot of questions, we can use the arrow icon in the item’s top left corner to fold/unfold the item.

There is a trash bin icon in the item’s top right corner that we can use to delete the item. If there are more than one
item, there are also arrow icons that we can use to change the order of the items.

Fig. 44: List question with a single item.

52 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Value Question

Value question contains an input field for our answer. This can be a simple text field (such as asking for a project
contributor’s name), or some additional widget, for example a date picker.

Some of the value types contains a validation (e.g., email or URL). We can still type in an invalid answer, but it will
display a warning and also show it in the list of warnings.

Fig. 45: Value question with a simple text input.

Integration Question

Integration question is connected to an external resource where it searches for the answers. The input field works as
a search field, so when we start typing something, it will search the external resource and offers us a list of possible
answers.

When we pick an answer from the list, we not only have the answer but also a link to the selected item in the external
service. If the answer we searched for is not there, we can simply keep what we have written in the input field. We just
won’t have the link with this answer.

Fig. 46: Integration question with a response from FAIRsharing containing also a link.

Multi-Choice Question

Multi-choice question is similar to the options question, however we can choose more there one answer and there are
no follow-up questions.

1.2. Data Management Planner 53

FAIR Wizard, Release 4.6

Fig. 47: Multi-choice question with many choices.

54 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

View settings

In the questionnaire tab, there is a menu bar with various options. The first one is View, where we can show or hide
some question details:

• Answered by - show/hide who and when answered questions

• Phases - show/hide what phase the questions are desirable in

• Question tags - show/hide the question tags

• Non-desirable questions - show/hide questions that are not desired to be filled in current phase

• Metric values - show/hide value of metrics for accessibility purpose

Fig. 48: Different view options accessible form the questionnaire toolbar.

Import answers

Questionnaire answers can be imported for various sources using project importers.

If there are some project importers available for the project, there is the Import answers button in the questionnaire
menu bar. We can choose one of the available importers there and then follow the instructions in the importer window.

Warnings

Some value questions (such as email or URL) validates the answer written there. If it is an invalid value, we will see
Warnings tab in the questionnaire menu bar with a badge showing the number of warnings. If we click on it, we can
see a list of all questions that has a warning and we can click on it to navigate quickly to that question.

Fig. 49: Warnings referring to questions with invalid values.

1.2. Data Management Planner 55

FAIR Wizard, Release 4.6

Comments

We sometimes want to leave comments to discuss things with our team or just reminders for ourselves. We can write
comments to each question in the questionnaire.

Fig. 50: Example of a comment.

56 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Add Comment

To add a comment, we need to click on the comments icon by the question which opens a side panel with all the
comments related to that question. Then, we can write the comment into the text box and submit.

View Comments

When there are any comments for a question, the comments icon is changed. It has a yellow color and shows the number
of unresolved comments for that question.

In the questionnaire menu bar, there is also a Comments tab, showing a badge with the number of comments everywhere
in the questionnaire. If we open the tab, we can see a list of questions for each chapter where there are some comments.
Clicking on the question there will bring us to that question and open the comments side panel.

Comment Threads

Comments are organized into comment threads for better clarity. We can either start a new thread or reply in an existing
thread if our comment is on the same topic.

When the thread is resolved, we can click on the ✓✓✓ icon in order to resolve it. Resolved threads can be later viewed by
selecting View resolved comments. They can also be reopened if needed.

Editor Notes

Besides comments there are also editor notes which work the same way as comments but they are visible only to project
editors and owners. We can use editor notes to internal communication with our team while working on the DMP and
then comments to gather the feedback from supervisor or reviewer.

TODOs

When we are filling in the questionnaire, we can stumble upon a question that we don’t know how to answer yet, but
we don’t want to forget to come back to that question. We can click on + Add TODO to add a TODO to the question.

We can then open the TODOs tab from the questionnaire menu to see the list of all questions with assigned TODO in
the questionnaire. By clicking on a question there, we can quickly jump back to that question and fill it.

Fig. 51: List of TODOs.

1.2. Data Management Planner 57

FAIR Wizard, Release 4.6

Version History

When we open the Version history tab from the questionnaire menu bar we can see the list of all the changes that
happened in that questionnaire. We can see who and when made what changes grouped by months and days.

Name a Version

At any point (also retroactively) we can name a version. Click on the triple dots on any event we want to name and
choose Name this version. Then we just fill in name and description of that version. If the event already has a named
version, we can choose Rename this version instead.

When we have some named versions, we can choose Named versions only. Then, we don’t see every single change but
only the important versions we gave a name to.

View Questionnaire in a Version

Thanks to the version history, we can see how the questionnaire was filled at any point in the past. We simply find the
event in the version history and choose View questionnaire from the event menu.

Create Document from an Older Version

Sometimes, we might want to create a document from an older version. For example, we created only a PDF document,
but later we find out that we also needed a Word document. To do that, we simply find that version in the version history
and select Create document. Then, we just fill in the details in the form and create the document.

Revert to an Older Version

We can also revert a questionnaire to an older version. We can simply find the desired version in the version history
and choose Revert to this version from the event menu.

Warning: Reverting to an older version cannot be undone. It is therefore recommended to create a copy of the
project before reverting.

Metrics

In the Metrics tab in the project detail we can see a Summary Report for the whole questionnaire and then the same
details for each individual chapter.

The report shows how many answered questions out of how many are there for the current phase (if there are phases in
the knowledge model) and overall.

If there are any metrics in the knowledge model, the report also shows the score for each metric. The score is calculated
as a weighted average of all the answers affecting that metric and is always between 0 and 1. If there are at least 3
metrics present, a spider chart is also displayed.

There is also a metrics description at the bottom of the page to better understand what exactly each metric means.

58 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 52: Version history shows all events changing the project.

1.2. Data Management Planner 59

FAIR Wizard, Release 4.6

Fig. 53: Summary report of project metrics.

Preview

We can quickly see how the resulting document would look like in the Preview tab.

Default Document Template Not Set

The preview uses the default document template. If there is no default document template set in the project settings,
we need to set it first.

Download Preview

Not all formats can be displayed in the web browser, for example a MS Word document. In that case, we’ll be able to
download the document instead of previewing it.

60 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 54: Document preview in the project detail.

Fig. 55: Preview only works when the default document template is set.

1.2. Data Management Planner 61

FAIR Wizard, Release 4.6

Fig. 56: Some formats cannot be displayed in the web browser.

Documents

In the Documents tab in the project detail we can manage the documents related to the project. We can see a list of all
the documents with their format, file size, and document template used to create that document.

While we can quickly see how the current state of the questionnaire looks like in the document in the preview tab, the
documents created here are persistent. That means that the once the document is created, it is immutable and you can
always download it later, after you have changed the questionnaire, and it will still be the same.

New document

We can click on New document when we want to create a new document. We need to give a name to our new document
(project name is prefilled) and choose the document template and format. If there is a default document template and
format set for the project, they are prefilled in this form. However, we can change them to whatever we want before
creating the document. Once we hit Create, we are taken back to the document list and we’ll see the new document
there (it might take while before it is generated though).

62 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 57: List of the documents on the project.

Document Submission

Submission services can be used to quickly submit the document directly from FAIR Wizard to some external service.

If there are any document submission services configured for our FAIR Wizard, we should be able to see Submit option
when we open document menu in the document list by clicking on the triple dots. Then we choose the desired from
the list and click on Submit.

We can see all the submissions for each document in the document list as well.

Settings

In the Settings tab, we can configure some details about the project. First we have a name and a description to identify
the project.

Next, we have Project Tags. These can be used for providing some metadata or categorization of the project. In the
project list, we can filter the projects by these tags. We can write any text we want as a project tag and FAIR Wizard
will suggest us the tags that are there already in use so we can keep them consistent.

1.2. Data Management Planner 63

FAIR Wizard, Release 4.6

Fig. 58: We can choose any compatible document template and format when creating a new document on the project.

64 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 59: Submission service selection for a document.

Fig. 60: Project settings.

1.2. Data Management Planner 65

FAIR Wizard, Release 4.6

Default Document Template

We can set a default document template and a default document format. These are then used in the preview tab and
also pre-selected when creating a new document.

Project Template

We can use the project as a project template. If we enable this option, researchers can use it when creating a new project
from project template. Note that we also need to make it visible for other logged-in users in sharing settings.

Note: Project template options are visible only for Data Stewards or Admins.

Unsupported metamodel can appear, when the document template is not compatible with the version of FAIR Wizard.
Researchers should contact their Data Steward or Administrator in this case.

Knowledge Model

We can see the knowledge model and its tags used for creating the project. If we want to change that, we can simply
create a project migration.

Danger Zone

In the danger zone, we can delete the project. Once the project is deleted it can no longer be recovered.

Sharing

We can share project with other FAIR Wizard users or even external collaborators. We can access all the sharing option
by clicking the Share button in the top right.

There are different roles in the project that can access different features:

The following video tutorial explains and showcases sharing options and tools that can be used while collaborating
with others. Some features mentioned in the video are also explained in the project questionnaire.

https://youtu.be/Yzg6I6epcXQ

Note: Some of the following options might be globally disabled in the application settings for the whole FAIR Wizard,
therefore not visible on the project level.

66 Chapter 1. Structure of the Guide

https://youtu.be/Yzg6I6epcXQ

FAIR Wizard, Release 4.6

Fig. 61: Project sharing settings.

1.2. Data Management Planner 67

FAIR Wizard, Release 4.6

Users

We can choose specific users from the FAIR Wizard and their role on the project to grant them access to project features
based on the table above. This is a good way to add other collaborators that work together with us on the project. Also,
this is the only way to add other project owners.

Visible by all other logged-in users

We can enable the Visible by other logged-in users toggle to grant access to the project for all other users without the
need to explicitly list them. Then, we can also choose what the users can do – view, comment, or edit the project. We
cannot grant owner access this way though.

This can be useful, when we want to have an example project accessible by everybody. We can simply enable this and
choose that other users can view the project. We also want to set this up when we create a project template.

Public link

We can enable the Public link toggle to grant access to the project to anyone who has the link. We can again choose
what they can do – view, comment, or edit the project. Also, the public link is visible there, so we can simply copy
it and send to whoever we want to collaborate with. Then, they don’t need a FAIR Wizard account and still be able to
access our project.

Project Migration

Every project is based on a specific knowledge model, its version, and selected tags. Sometimes, we might want to
change the knowledge model to a different version (for example, when a new version is released), change the knowledge
model (for example, when a new customization is created), or just change the tag selection. Project migration is a
process where we can do this.

The following video explains all aspects of Project Migration.

https://youtu.be/536IqCCfLyk

Creating a Project Migration

We can start a project migration either from the project list, or from the project settings. Sometimes, when there is a
newer version of the knowledge model available, we can see a tag update available next to the project name. We can
click on the tag to start the migration as well.

We can see the original knowledge model, its version, and selected question tags on the left side. On the right side
we can choose new values for all of these. After we are satisfied with our selection we can click on Create button.

Note that the original project will remain unchanged until the migration is finished. So we can cancel it anytime before
it is finished without affecting the project.

68 Chapter 1. Structure of the Guide

https://youtu.be/536IqCCfLyk

FAIR Wizard, Release 4.6

Fig. 62: Choosing a new knowledge model for the project when creating a project migration.

Project Migration

The next screen is the project migration itself. We can go through all the changes between the original and the new
knowledge model that affects our answers. During this process, we can also add todos if we want to come back to a
specific question later, after the migration.

It is possible that there are no changes to review. This can happen when we don’t have all the answers in the questionnaire
yet and those we have are not affected by the changes, i.e., all of the questions that we answered are in the original and
in the new knowledge model.

We can leave the migration at any point now and come back to it later. We will see the project twice in the project list,
one of them tagged as migrating. If we open the migrating one, we can come back to the project migration. If we open
the other one, we can access the original project, however, only in the read-only mode until the migration is finished or
cancelled.

1.2. Data Management Planner 69

FAIR Wizard, Release 4.6

Fig. 63: Reviewing changes during the project migration.

Cancelling a Project Migration

At any point before we finalize the migration, we can decide that we actually don’t want to do the migration. We can
simply navigate to the project list and choose the Cancel migration action on the project tagged as migrating. This will
cancel the migration and the original project will remain unaffected.

Finishing a Project Migration

After we resolve all the changes (or if there are no changes to review), we can click on Finalize migration. This will
complete the project migration applying all the knowledge model changes, and unlocking the project from the read-only
mode.

Project Templates

Note: Only the data stewards or admins can create project templates.

When creating a new project, we need to choose a knowledge model and optionally select some question tags. After
the project is created, we should also choose a default document template and format to enable preview. It can be
overwhelming for new researchers to set up everything when they are new to all this.

Project templates are special type of projects where we can set up everything – choose a knowledge model and question
tags, set up default document template, pre-fill some answers, add TODOs, comments or editor notes. Researchers can

70 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

then pick from these project templates when creating a new project. The new project will be the exact copy of the
project template so they don’t have to set those things themselves and they have an easier start to their data management
planning.

When we want to turn a project into a project template we need to go to the project settings and check the Project
Template checkbox.

Sharing the Project Templates

Warning: Project templates follow the same rules for sharing as regular projects. Therefore, to make it available
for other users, we need to set up proper sharing settings.

We can either share them with specific users only, or we can simply enable that the project template is visible by all
other logged-in users and that they can only view it (as we do not want them to change it).

External Resources

• Project Templates in FAIR Wizard

Project Importers

Warning: Project importers are an experimental feature.

We can use project importers to import data from different FAIR Wizard or even different applications to FAIR Wizard.
Each has a set of supported knowledge models defined. This is because each knowledge model has a different structure
and the importer needs to understand it so it can import the answers to the correct questions.

Note: Only data stewards or admins can access project importers.

If we navigate to Projects → Importers, we can see the list of all available importers. We can enable or disable them
by clicking on the triple dots icon and choosing the appropriate action.

Fig. 64: List of project importers where we can enable or disable them.

More information about how to develop project importers is available on the project importers development page.

1.2. Data Management Planner 71

https://fair-wizard.com/blog/project-templates-in-fair-wizard

FAIR Wizard, Release 4.6

1.2.4 Documents

As admins, we can quickly browse all documents stored in the FAIR Wizard by navigating to Documents from the main
menu. It is possible to search for a document by name or sort them using the name or creation timestamp.

Each document has name, format, and certain size (if the generation is finished). It can be directly downloaded or
deleted from the list. Moreover, we can quickly navigate to the project from which the document is created.

In case that there is a document that was not generated due to an error, we can check the error message. Also, if there
are some documents got stuck in Queued or In Progress status, we should check the deployment (especially of the
document worker component).

Fig. 65: List of all documents across projects.

1.2.5 Administration

Administration section serves admins with managing the FAIR Wizard. By navigating via Administration item from
the main menu, we can manage the things listed below.

72 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Settings

This section covers different settings available to admin users. The settings are categorized as listed below.

Note: Do not forget press Save button to save the changes.

System Settings

System settings allow us to configure basics about the organization running the FAIR Wizard.

Organization Settings

On this page, we can configure Name, Description, and Organization ID for our FAIR Wizard. The organization ID
can contain alphanumeric characters and dot symbol (but cannot start or end with dot).

Note: It is recommended to use period as for domain name or to use it for capturing organizational structure in the
ID, for example, faculty.university or group.faculty.university.

User Interface Settings

User Interface (UI) settings allow us to manage how the Data Management Planner app looks like: dashboard shown
when user logs in, announcements and custom menu links.

Dashboard Settings

The dashboard settings allows us to adjust what users will see after they log in, i.e. on the application initial page called
the dashboard.

Dashboard Style

We can select the Dashboard Style whether the user should see a standard welcome screen which just greets the user
in the application, or a role-based dashboard which contains widgets based on current user’s role (see User Roles):

• Researcher

– Recent Projects Widget contains a list of recent projects of the user for a quick navigation.

– Create Project Widget lets the user quickly start a new project.

• Data Steward

– Create KM / Project Template Widgets let the user to quickly start a new knowledge model editor or
project template.

1.2. Data Management Planner 73

FAIR Wizard, Release 4.6

– Outdated KM / Document Templates Widgets allow to quickly see outdated packages and document
templates in case the FAIR Wizard Registry connection is configured.

– Import KM / Document Template Widgets allow to proceed easily to import of a knowledge model or a
document template in case the FAIR Wizard Registry connection is configured.

• Administrator

– Outdated KM / Document Templates Widgets allow to quickly see outdated packages and document
templates in case the FAIR Wizard Registry connection is configured.

– Usage Widget summarizes the usage just as is also possible to see in the Usage.

– Configure Organization Widget quickly navigates to Organization Settings if it is not yet done.

Announcements

Another option to adjust the dashboard and/or the login screen is to add Announcements. Announcements are displayed
above the main content in the login screen. In dashboard, they are also displayed above the main content for both
welcome and role-based dashboard style. There are three levels of Announcements:

• Info - light blue color for sending information to the users.

• Warning - yellow to warn the users about something.

• Critical - red to signalize the Announcement is critical and it needs attention.

The content of the Announcement can be edited using Markdown. There are also two additional switches which
determine, where the Announcement is displayed. The Announcement can be set up to be displayed either on the
dashboard after users log in or on the login screen before the users log in. It is also possible to display the same
Announcement in both places. Number of Announcements is not limited.

Menu Settings

This part of settings allows us to adjust how the FAIR Wizard menu looks like.

Custom Menu Links

We can easily add custom links to the main (left) menu by clicking Add under Custom Menu Links. For each link,
we can set Icon (from Font Awesome), Title and the target URL. We can also set whether the link should open in New
Window (if not, it will navigate user directly in the same window/tab from FAIR Wizard). Once the links are there,
we can manage them or delete them at this place.

Content Settings

This part of settings allows us to configure various content-related things such as Knowledge Models, Projects, and
Document Submissions as listed below.

74 Chapter 1. Structure of the Guide

https://fontawesome.com/v5/search

FAIR Wizard, Release 4.6

Fig. 66: Example configuration of a custom menu link.

Knowledge Models Settings

Public Knowledge Models

If we want to let users to see and browse certain Knowledge Models (specifically, visit the KM detail and the KM
preview) even if not logged in, we can enable Public Knowledge Models. Then, we need to specify Allowed Packages,
e.g. which ranges of versions of a certain knowledge model will be publicly available. A blank value serves as any
value, for example, if we fill the Organization ID and Knowledge Model ID but leave Min Version and Max Version,
it will result in all version of that knowledge model to be public.

Integration Config

The integrations specified in Knowledge Models can use configuration values (typically secrets such as API keys or
tokens) from YAML configuration specified here under Integration Config. The value here can be for example:

dbase:
apiKey: topSecretDBaseApiKey
apiUrl: https://api.dbase.example:10666

Note: This configuration value is encrypted in the database.

1.2. Data Management Planner 75

FAIR Wizard, Release 4.6

Projects Settings

Project Visibility

If we want to let users select visibility of their projects within the FAIR Wizard, we can enable Project Visibility
feature. If it is disabled, the new projects will have the Default Project Visibility which is used when creating a new
project:

• Private = the project is visible only to the users with explicit access to the project.

• Visible - View = the project is visible in view-only mode to all logged-in users, i.e. all users will be able to
see the project in their projects list and access it (but not edit or comment anything unless they are invited with
different permissions).

• Visible - Comment = the project is visible in comment mode to all logged-in users, i.e. all users will be able to
see the project in their projects list, access it and comment it (but not edit anything unless they are invited with
different permissions).

• Visible - Edit = the project is visible in edit mode to all logged-in users, i.e. all users will be able to see the
project in their projects list, access it, comment it, and also edit it (e.g. answer questions or editor notes).

Project Sharing

If we want to let users select sharing option of their projects within the FAIR Wizard, we can enable Project Sharing
feature. If it is disabled, the new projects will have the Default Project Sharing which is used when creating a new
project:

• Restricted = only logged-in users can access the project depending on the project visibility (no public access for
anonymous users).

• View with the link = anyone with the link to the project may open it in view mode and browse it.

• Comment with the link = anyone with the link to the project may open it in comment mode, i.e. browse it and
comment on questions.

• Edit with the link = anyone with the link to the project may open it in edit mode, i.e. browse it, comment on
questions, and also edit it (e.g. answer questions or editor notes).

Anonymous Projects

If we have enabled Public Knowledge Models, we can also allow anonymous users to create projects where they will be
able to fill questionnaires by enabling Anonymous Projects. These anonymous project then work as any other projects
with public link set to edit permissions. However, if a logged-in user accesses such a project, then such a user may
claim the ownership by clicking Add to my projects button. Anonymous users cannot create new documents, for that
they must register and open the project as a logged-in user.

76 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Feedback

In case we want to allow users to provide feedback specific to questions directly from questionnaires, we can enable
Feedback and configure a GitHub repository which will be used as an issue tracker. We should have a bot/service
account created with access to the GitHub repository and obtain Personal Access Token. This account will be used
to create the GitHub issues in the repository. Then, we need to simply fill GitHub Repository Owner, GitHub
Repository Name, and the Access Token.

Note: The Access Token value is encrypted in the database.

Project Tagging

If enabled, users will be able to tag their projects (using so-called Project Tags) and then use those tags to filter the
projects list. The users will be always able to write their own tags but we can provide a list of pre-defined Default
Project Tags (one per line).

Document Submission Settings

If we enable the Document Submission feature, users will be able to see Submit option for their documents. After
selecting it, they will be prompted to select a service compatible with the document where they want to submit it.

Each service must have its own ID (recommended is to use lowercase alphanumeric symbols and dash symbols). Then,
we can set human-readable Name and Description (Markdown-enabled) to clarify for users what is this service and in
what cases they should use it. We also need to specify the Supported Formats, for each we need to select a document
template, its version, and the desired format. Finally, we configure how the document is sent to the external service,
the request may contain some User Properties (users will be able to set values for them in their user profiles) and it
is a HTTP request with a specific Method, sent to the URL, possibly with HTTP Headers. The very last option is to
check whether the file should be sent as Multipart (with its own File Name) instead of plainly in the request body.
Most of this configuration should be specified by the external submission service.

Note: In case we will update the document template used in Supported Formats, we should verify that it is still
suitable for the submission service and if yes, then add it as a new entry under Supported Formats.

Info

The info section of settings simply serves to let us check various information and statistics about the FAIR Wizard
instance.

1.2. Data Management Planner 77

https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line

FAIR Wizard, Release 4.6

Usage

Usage allows us quickly see numbers of entities in the FAIR Wizard such as number of users, active users, knowledge
models, KM editors, templates, projects, or documents. Moreover, we can see storage usage, i.e. how much capacity
is being used by documents and templates (their files). We cannot perform any actions on this page.

Fig. 67: Usage statistics.

Locales

After navigating to Locales (under Administration), we can browse and manage a list of locales in the FAIR Wizard.
Similarly to knowledge models and document templates, each locale has its unique identifier and version. Moreover,
each locale has a language code specified. In the list we see the latest version and can quickly navigate to Locale Detail
(which includes also older versions) by clicking the locale name or selecting View detail from the right item menu of
the desired row.

There is always the English locale (wizard:default:1.0.0) which is embedded and cannot be deleted. For others,
we can use Export and Delete options from the right item menu.

Another option is to switch other locale to be the default one using Set default action. The default locale will be used
if there isn’t an available locale that matches the user’s preferences (explicit or implicit from the web browser) We can
Disable or Enable locales except the default one (which must be enabled).

If there is a locale with newer version available in the FAIR Wizard Registry (and if configured), update available
clickable badge may appear. Finally, we can use Import to Import Locale and Create to Create Locale.

Note: We support community of DSW translators by managing the repository ds-wizard/wizard-client-locales and
service for translating using web browser localize.ds-wizard.org.

Warning: For now, only Data Management Planner has localization.

78 Chapter 1. Structure of the Guide

https://registry.fair-wizard.com/
https://github.com/ds-wizard/wizard-client-locales
https://localize.ds-wizard.org

FAIR Wizard, Release 4.6

Fig. 68: List of locales.

Import Locale

We can import an existing locale by navigating to Settings → Locales in the main menu and then clicking on Import
button on the list of locales.

From FAIR Wizard Registry

The FAIR Wizard instance is connected to the FAIR Wizard Registry. That allows us to import locales from it by
entering the locale ID of desired template (e.g. fw:cs:4.3.0) and pressing the Import button.

Note: In case of locales present in the FAIR Wizard Registry, we will be notified about the available upgrades.

From file

We can import a locale as a ZIP package. Such a package can be created as an export from FAIR Wizard.

1.2. Data Management Planner 79

https://registry.fair-wizard.com/
https://registry.fair-wizard.com/

FAIR Wizard, Release 4.6

Fig. 69: Input for importing a locale from FAIR Wizard Registry.

Fig. 70: Input for importing a locale using a ZIP package.

80 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Create Locale

We can create a new locale directly in FAIR Wizard by pressing Create from Locales. We need to fill the details about
the new locale such as name, description, language code (RFC5646, e.g. en or en-GB), locale ID, locale version,
license, README (with Markdown syntax), and recommended app version. The recommended app version captures
for which version of the FAIR Wizard is this locale intended and compatible with (it can be used in other versions as
well but may have some untranslated texts).

Finally, a PO file is requested from us. We can create such PO file in a standard (gettext-based) way. The needed POT
file is always part of the release attachments of the wizard client application (select the desired release and there is
wizard.pot asset).

Locale Detail

The detail of a locale provides us information about a locale after navigating to it from Locales. The detail shows basic
information about the locale such as its name, ID, language code (RFC5646, e.g. en or en-GB), version, recommended
compatible FAIR Wizard version, license, and indication whether the locale is enabled or not.

The main part of the detail is the README of the locale that should contain basic information and changelog. In the
right panel under the basic information, we can navigate to other versions of the locale.

In the top bar, we can Export the locale as a ZIP package, set or unset it as default, Enable or Disable it, or Delete this
version of the locale.

Note: The default locale must be always enabled as it serves for users that did not have any preference or do not request
matching locale directly using the browser configuration.

1.2.6 Profile

As every logged-in user, we can manage our own profile. We can see the options by hovering over the box with our
name and avatar in the lower part of the left sidebar with main menu (only avatar is shown in case of collapsed sidebar).
From there, we can navigate to User Settings. If locales are configured, we can also Change Language.

Moreover, there are also options to Log out, see basic information about the FAIR Wizard using About, or in case of
problems we can use Report issue to know how to proceed.

User Settings

After navigating to Edit profile from the Profile menu, we open the User Settings. We can view our Email address,
First name, Last name, and Affiliation. To edit those values, we must first switch to the Admin App and continue
there.

We can see API Keys we have generated and App Keys used to connect to different apps.

We can also see Active Sessions and revoke them if needed.

In case of configured submission services, there might be additional inputs under Submission Settings such as API
tokens or other information used for the document submission.

Note: The values of Submission Settings are treated as potentially sensitive information; thus are stored encrypted.

1.2. Data Management Planner 81

https://www.rfc-editor.org/rfc/rfc5646.html
https://www.gnu.org/software/gettext/
https://github.com/ds-wizard/engine-frontend/tags
https://www.rfc-editor.org/rfc/rfc5646.html

FAIR Wizard, Release 4.6

Fig. 71: Detail of a locale.

Fig. 72: Profile menu.

82 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 73: Form for editing profile with example submission settings.

API Keys

When we want to access the FAIR Wizard through FAIR Wizard API we have to set up an API Key. The API Key has
an API Key Name so we can remember for what purpose this Key is used and Expiration which is a date from when
the API Key will no longer be valid.

Fig. 74: Form for creating an API Key.

After filling out the API Key Name and Expiration, an API Key is generated. In this step we have to copy the API Key,
because after seeing it once, it is no longer possible to access it again.

1.2. Data Management Planner 83

FAIR Wizard, Release 4.6

After we click on Done button, the new API Key is hidden and the information about this key is added to the table
below, that contains all Active API Keys.

App Keys

When apps of the FAIR Wizard are communicating, they sometimes need to store each other App Keys. We can view
them here.

Active Sessions

Here we can see list of active sessions that are logged into our account. In case we don’t longer want any of them to
have access to our, we can revoke the session.

Fig. 75: List of active sessions.

Submission Settings

If there are any Submission Settings that require input from the user, this input is requested here in Submissions Settings.

Change Language

A user can explicitly select a desired language after clicking Change language from the Profile menu. In case the
language becomes unavailable later after the selection, it will fall back to the one marked as default.

Note: The selection of language is saved only locally in the browser (in local storage), so if we log in from different
locations, we need to select the language there again.

1.3 Admin Center

Admin Center is an application for management of the FAIR Wizard application and users within it. This application
is mainly used for administration by administrators. It is used for users and user groups management, import of data,
and settings management. User groups can also be managed by data stewards.

84 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 76: Modal window with language selection.

1.3.1 Users

Users list allows administrators to see and manage all users in the FAIR Wizard. The list can be filtered using role,
searched using name or email fragment, and sorted via various properties of users. The list shows the role of a user
next to its name and also indicates in case the user is inactive. Next to the email, we can quickly see what authentication
services the user uses to log-in (internal is the internal authentication with email-password credentials, other are based
on configured OpenID services).

A user detail can be opened by clicking the name of a user or by selecting Edit in the right dropdown menu for the
desired row. There, a user can be also deleted via the Delete action. Finally, administrator can invite a new user by
clicking Invite, or import users by clicking Import.

Invite User

As administrators, we can create new users manually by clicking Invite on the users list and submitting the form. Each
user must have a unique email address, first name and last name and assigned role. Optionally, a user can have affiliation
specified.

Note: If the user is created by administrator, the user is activated by default and no email is sent to the user.

User Detail

As administrators, we can edit existing users manually on the detail (selected user from the users list). It is possible to
change all properties of the user, including possibility to change whether the user account is active or inactive.

The password can be also changed (after selecting Password from the left navigation of user settings).

1.3. Admin Center 85

FAIR Wizard, Release 4.6

Fig. 77: List of users.

Fig. 78: Invite user.

86 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 79: Detail of a user profile.

Fig. 80: Form for changing password of a user.

1.3. Admin Center 87

FAIR Wizard, Release 4.6

User Roles

There are three user roles available: researchers, data steward, and admin. Permissions are associated with the roles,
basically they affect what the users can do in the FAIR Wizard:

1.3.2 User Groups

As a data steward or an administrator, we can create a user group. The group can be used to add multiple people to a
project at once. A group can be selected in sharing settings of a project.

User Groups list allows us to see and manage all user groups in the FAIR Wizard. The list can be searched based using
name fragment, and sorted via properties of user groups, name and date created.

User Group Settings can be opened by clicking the name of a user group or by selecting Edit in the right dropdown
menu for the desired row. There, a user group can be also deleted via the Delete action. Finally, a new user group can
be created by clicking Create.

Fig. 81: User groups.

88 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Create

As an administrator, we can create a new user group. For the user group we must set its name and optionally its
description. We can also set the group as either a public or private group. Public groups are visible to all users, while
private groups are only visible to the group members.

Fig. 82: Create user group.

User Group Detail

As an administrator, we can manage existing user group from User Group Settings. We can change name and description
of a group and make it private. If a group is private, then only its members and application admins can see it.

Fig. 83: User group detail.

We can also see list of all members of a group. Each member can be set as either Owner of a group or its member.
Member can also be removed from the group by clicking on the x button. We can view users’ profile by clicking his
name.

1.3. Admin Center 89

FAIR Wizard, Release 4.6

Fig. 84: User group members.

We can add new members to the group by picking them from dropdown menu.

Note: Don’t forget to click on the Save button to save the changes.

1.3.3 Import

As an administrator, we can import users and projects using provided templates.

Fig. 85: Import options.

90 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Users Import

As an administrator we can import users using provided template. The template has five columns: email, firstName,
lastName, affiliation and role. Once it is filled with data, we can import it back to the FAIR Wizard to populate it with
users.

Fig. 86: Import users.

Projects Import

As an administrator, we can import projects using provided template. The template has four columns: name, knowl-
edgeModelId, documentTemplateId and emails of users we want to add as owners to a project. Once it is filled with
data, we can import it back to the FAIR Wizard to populate it with projects.

1.3. Admin Center 91

FAIR Wizard, Release 4.6

Fig. 87: Import projects.

92 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

1.3.4 Audit Log

Audit log is a feature that allows administrators to track everything that is happeningg in the FAIR Wizard.

Note: For now, Audit log is only available for actions done in the Admin Center. Other applications will be added in
the future updates.

List can be searched based using content of audit logs. The dropdown menu can be used to select which app logs we
want to display. Then we can also select which component we want to see. In the list we can see what particular action
has been done, who did it and when it happened.

Fig. 88: Audit log.

A log item detail can be opened by clicking any log record. Based on which log record has been opened, detail contains
information on what was changed and how. Some things, such as performer of the change can be clicked to open a
detail of that user.

1.3.5 Settings

Settings section serves admins with managing the FAIR Wizard, more specifically its Admin Center. By navigating
via Settings item from the main menu, we can manage the things listed below.

1.3. Admin Center 93

FAIR Wizard, Release 4.6

Fig. 89: Audit log detail.

System Settings

System settings allow us to configure Privacy and Support settings of FAIR Wizard. There is also Users settings.

Privacy & Support Settings

To request users to agree with Privacy Policy and/or Terms of Service documents, we can configure URLs to locate
such documents. Then, when new users register to the service or login for the first time, they will be prompted to
agree with the linked documents. Note that usually you should inform already registered users in case you change such
documents.

Support

These settings also allow us to configure Support Email that users can use to request help or report issues. Similarly
Support Site Name and Support Site URL can be used in case we want users to create tickets in issue tracker of some
repository, e.g., on GitHub. Support Site Icon can also be configured, using Font Awesome. These support links
together with an icon are then shown in Report issue modal window.

94 Chapter 1. Structure of the Guide

https://fontawesome.com/v5/search

FAIR Wizard, Release 4.6

Fig. 90: Privacy and Support settings.

1.3. Admin Center 95

FAIR Wizard, Release 4.6

Users Settings

Users Settings allow us to configure default role for new users. It is also possible to set up a list of affiliations that will
be suggested to users while they register or update their profiles.

Warning: It is recommended to set up the default role for new users with lowest possible rights, Researcher. This
way, users will not have access to change any settings.

Another part of settings on this page are Affiliations. It servers to pre-define a list of possible affiliations (on per line)
that will be suggested to users while they register or update their profiles.

Fig. 91: Users settings.

Authentication Settings

The Authentication Settings page allows you to configure the authentication settings for users. You can configure the
following settings:

• Internal: This is the default authentication method. You can configure the settings for the internal authentication
method.

• Open ID: You can configure specific Open ID authentications.

• SAML: You can configure specific SAML authentications. However SAML configuration requires certain tech-
nical knowledge and cannot be done only in the FAIR Wizard.

The FAIR Wizard also supports Shibboleth and eduGAIN.

Note: For configuration of SAML, Shibboleth or eduGAIN please contact the FAIR Wizard team.

96 Chapter 1. Structure of the Guide

https://openid.net/
https://wiki.oasis-open.org/security/FrontPage
https://www.shibboleth.net/
https://edugain.org/
mailto:info@fair-wizard.com

FAIR Wizard, Release 4.6

Internal Settings

Internal Settings allow us to enable or disable registration. Once turned off, users can only register using other ways,
e.g. OpenID or SAML.

We can also enable or disable Two-Factor Authentication (2FA) for users. If enabled, users will be required to enter a
one-time code sent to their email address after entering their password.

Fig. 92: Internal Settings.

Open ID Settings

Using these settings we can add Open ID configuration to allow logging into the FAIR Wizard instance via external
identity provider. First, press Create button and fill Name of the service (use only lowercase alphanumeric characters
or dash symbols). Then, we should prepare the client application on the side of OpenID service:

• Use Callback URL (and optionally Logout URL) to create the client

• Obtain Client ID and Client Secret

• Obtain OpenID endpoint URL (we may get one ending with /.well-known/openid-configuration, if so
we just use the part before this suffix)

• Configure the client to have the following claims: openid, profile, email

• Configure the client to provide the following details in ID tokens: email, given_name, family_name

Back in the FAIR Wizard settings, we can fill Client ID, Client Secret, and URL from our OpenID client together with
optional Parameters (usually not needed). Finally, we can configure how the log-in button will look like by setting
Icon (by using Font Awesome), Name, Background, and text/icon Color.

Note: After setting a new OpenID service, we should directly test it and verify that the configuration works well. For
that, we can simply open our FAIR Wizard instance in a new anonymous window of the web browser.

1.3. Admin Center 97

https://openid.net/
https://fontawesome.com/v5/search?o=r&m=free

FAIR Wizard, Release 4.6

Fig. 93: Example configuration of OpenID service.

SAML Settings

SAML is another option for authentication. However setting up SAML is not trivial and requires certain level of
technical knowledge. Please contact the FAIR Wizard team team to assist you with SAML configuration.

Based on SAML, FAIR Wizard supports authentication using Shibboleth and eduGAIN.

Note: For configuration of SAML, Shibboleth or eduGAIN please contact the FAIR Wizard team.

User Interface Settings

User Interface Settings allow us to customize login screen info and various announcements. It also allows us to change
FAIR Wizard title, logo and colors. Lastly we can add custom menu links.

Dashboard and Login Screen Settings

Login Info

It is possible to write a message that users will see before logging in the FAIR Wizard, using HTML or Markdown.
The Login info is placed in the center of the login screen. We can use it to explain users in what cases they can/should
use our FAIR Wizard, how they should log in (e.g. if we have more authentication services configured), or if there is
any news regarding our FAIR Wizard.

98 Chapter 1. Structure of the Guide

https://wiki.oasis-open.org/security/FrontPage
mailto:info@fair-wizard.com
https://www.shibboleth.net/
https://edugain.org/
mailto:info@fair-wizard.com

FAIR Wizard, Release 4.6

Fig. 94: Example configuration of SAML service.

Warning: Defining HTML classes in the login info can overwrite FAIR Wizard application classes. It is recom-
mended to use prefixes for classes, if they are used, to avoid conflicts.

Sidebar Login Info

It is also possible to write another message that users will see on the login screen. The Sidebar Login info is placed
underneath the login form. We can also use HTML or Markdown as in the Login Info.

Warning: Defining HTML classes in the login info can overwrite FAIR Wizard application classes. It is recom-
mended to use prefixes for classes, if they are used, to avoid conflicts.

Announcements

Another option to adjust the dashboard and/or the login screen is to add Announcements. Announcements are displayed
above the main content in the login screen. In dashboard, they are also displayed above the main content for both
welcome and role-based dashboard style. There are three levels of Announcements:

• Info - light blue color for sending information to the users.

• Warning - yellow to warn the users about something.

• Critical - red to signalize the Announcement is critical and it needs attention.

1.3. Admin Center 99

FAIR Wizard, Release 4.6

Fig. 95: Privacy and Support settings.

100 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

The content of the Announcement can be edited using Markdown. There are also two additional switches which
determine, where the Announcement is displayed. The Announcement can be set up to be displayed either on the
dashboard after users log in or on the login screen before the users log in. It is also possible to display the same
Announcement in both places. Number of Announcements is not limited.

Fig. 96: Announcements settings.

Look and Feel Settings

Look and Feel Settings allow us to configure Application Title and Short Application Title. They are used together
with Logo in the FAIR Wizard and also in various email templates (invitation to a project, forgotten password, . . .).

Primary Color and Illustrations Color can be used to customize the look of the FAIR Wizard, for example by using
company colors.

Lastly we can easily add custom links to the main (left) menu by clicking Add link under Custom Menu Links. For
each link, we can set Icon (from Font Awesome), Title and the target URL. We can also set whether the link should
open in New Window (if not, it will navigate user directly in the same window/tab from FAIR Wizard). Once the links
are there, we can manage them or delete them at this place.

1.3. Admin Center 101

https://fontawesome.com/v5/search

FAIR Wizard, Release 4.6

Fig. 97: Titles and logo settings.

102 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 98: Colors settings.

Fig. 99: Example configuration of a custom menu link.

1.3. Admin Center 103

FAIR Wizard, Release 4.6

Info

The info section of settings simply serves to let us check various information and statistics about the FAIR Wizard
instance.

Plans

Plans provide information about which plan we are currently subscribed to. Each plan specifies the number of users
allowed to access the FAIR Wizard, as well as the start and end dates of the plan’s activation. Past plans are also
displayed here.

Fig. 100: Plans.

Usage

Usage allows us quickly see numbers of users, active users in the FAIR Wizard such as number of available scraper
invocations for reporting. We cannot perform any actions on this page.

1.3.6 Profile

As every logged-in user, we can manage our own profile. We can see the options by hovering over the box with our
name and avatar in the lower part of the left sidebar with main menu (only avatar is shown in case of collapsed sidebar).
From there, we can navigate to Edit Profile.

Moreover, there are also options to Log out, see basic information about the FAIR Wizard using About, or in case of
problems we can use Report issue to know how to proceed.

104 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 101: Usage statistics.

Edit Profile

After navigating to Edit profile from the Profile menu, we open the User Settings. We can edit our Email address, First
name, Last name, and Affiliation. We need to submit the changes by clicking Save button.

Fig. 102: Form for editing profile.

If we want to Change Password, we need to switch to Password from the left menu titled User settings.

1.3. Admin Center 105

FAIR Wizard, Release 4.6

Change Password

The password be can changed after navigating using Password from the Edit Profile. Here we can simply enter new
password (it must be strong enough), repeat it again and press Save button.

Fig. 103: Form for changing password.

API Keys

When we want to access the FAIR Wizard through FAIR Wizard API we have to set up an API Key. The API Key has
an API Key Name so we can remember for what purpose this Key is used and Expiration which is a date from when
the API Key will no longer be valid.

Fig. 104: Form for creating an API Key.

After filling out the API Key Name and Expiration, an API Key is generated. In this step we have to copy the API Key,
because after seeing it once, it is no longer possible to access it again.

After we click on Done button, the new API Key is hidden and the information about this key is added to the table
below, that contains all Active API Keys.

106 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Active Sessions

Here we can see list of active sessions that are logged into our account. In case we don’t longer want any of them to
have access to our, we can revoke the session.

Fig. 105: List of active sessions.

1.4 Integration Hub

Integration Hub is an application for management of integrations. For now, it offers creation of Value integration.

1.4.1 Value Integrations

As an administrator, we can use value integration to setup an integration to be used by Data Stewards in their Knowledge
Models as source of data.

We can start creating a new value integration by clicking on the Create button.

Create

As an administrator, we can create a value integration. To start, we must fill in its name and id. After clicking on Create
button, we can continue in the value integration detail.

Detail

As an administrator, we need to fill in some information about the Integration. We have filled name and ID in the
previous step, now we just need to fill in the Response Item Template. This defines how the items from the values
will be displayed for the user. You can use the column names as item properties in Jinja2 notation. You can also use
Markdown for some formatting. For example, if there is a column called name, you can use **{{item.name}}** to
display the name in bold.

In Values, we can set up specific values. First, we need to give names to columns and then fill the rows with data. We
can do that either manually or use Import functionality. We can also manually delete columns or rows or Delete all.

1.4. Integration Hub 107

FAIR Wizard, Release 4.6

Fig. 106: Value integrations.

Fig. 107: Create value integration.

108 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 108: Value integration detail info.

1.4. Integration Hub 109

FAIR Wizard, Release 4.6

Fig. 109: Value integration detail values.

110 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Note: Order of columns can be random as it does not matter for the JSON.

Warning: JSON is case sensitive.

We can import any CSV file. To do that, we click on the Import button and select the file. The file should be in CSV
format and the first row should contain the column names. The file should not contain any empty rows. If the file is
not in the correct format, the system will display an error message.

Fig. 110: Value integration import.

If we choose to insert values manually or do some changes to the values, we can always use Export button to get the
data.

Note: Don’t forget to save your changes.

1.5 Reporting

Reporting is an application for management of reports. It allows scraping of data from other apps, and then creating
reports based on that data.

Reporting can be currently done on top of projects and users.

To get latest data, click on Scrape now button. This will scrape the data from the other apps and store it in the reporting
database. Once the data has been updated, the page will automatically refresh.

1.5. Reporting 111

FAIR Wizard, Release 4.6

1.5.1 Projects

As an administrator, we can create a report based on various projects. We can select from many different fields and see
how our projects are doing in them. The report can be modified and save to be viewed later. The data of the report can
also be exported to a CSV file.

Fig. 111: Projects overview.

New report can be created by clicking on the dropdown menu in the top right corner. Then by clicking on + Create a
new view we open the view settings. We can give our view a name and select which fields we want to have in there.
The report can be saved by clicking on Save. We can also delete the report by clicking on Delete.

We can resize all rows height by clicking on the double arrow in the top left corner. If we want to edit width or height
of individual cells, we can do it using drag-and-drop on the borders. Lastly we can edit how many rows are on the page
by clicking on the Items per page dropdown menu.

Note: Don’t forget to click on Save icon after you are done with editing the view.

The report can be exported to a CSV file by clicking on Export CSV.

112 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 112: Form for editing reporting view.

1.5. Reporting 113

FAIR Wizard, Release 4.6

1.5.2 Users

As an administrator, we can create a report based on users. We can select from many different fields and see how our
users are doing in them. The report can be modified and save to be viewed later. The data of the report can also be
exported to a CSV file.

Fig. 113: Users overview.

New report can be created by clicking on the dropdown menu in the top right corner. Then by clicking on + Create a
new view we open the view settings. We can give our view a name and select which fields we want to have in there.
The report can be saved by clicking on Save. We can also delete the report by clicking on Delete.

We can resize all rows height by clicking on the double arrow in the top left corner. If we want to edit width or height
of individual cells, we can do it using drag-and-drop on the borders. Lastly we can edit how many rows are on the page
by clicking on the Items per page dropdown menu.

Note: Don’t forget to click on Save icon after you are done with editing the view.

The report can be exported to a CSV file by clicking on Export CSV.

1.6 Development

FAIR Wizard can be extended in many ways and new components and ways of integrations can be developed to support
our needs. Besides the API available for everything that can be done in FAIR Wizard, new integration questions
and project importers can be implemented to get data from outside to FAIR Wizard, or new document templates and
submission services can be created to get the data outside of FAIR Wizard in the desired form.

This section provides information on how to develop custom content for FAIR Wizard to fully tailor the tool to our
specific requirements.

1.6.1 Metamodel Schemas

As Data Stewardship Wizard evolves, the internal structures may change during the time. To support migration under
the hood, we use metamodel versioning for KM and templates.

114 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Fig. 114: Form for editing reporting view.

1.6. Development 115

FAIR Wizard, Release 4.6

KM Package (.km file)

File for import and export of Knowledge Models is a JSON file that contains all KM packages (lists of change events
with additional metadata). The structure of events is versioned using the KM metamodel version number and migrations
in FAIR Wizard automatically update the KMs when needed. As said, files according to this schema can be exported
from Knowledge Model List or Knowledge Model Detail and then used for Knowledge Model Import.

Metamodel Version Schema file Changes (brief) Since
14 JSON Schema Optional Integration fields 4.1.0
13 JSON Schema New question value types 3.12.0
12 JSON Schema Enhanced integration (e.g. widget type) 3.10.0
11 JSON Schema Annotations and timestamps for events 3.8.0
10 JSON Schema Integrations with item template 3.6.0
9 JSON Schema Annotations 3.5.0
8 JSON Schema Metrics and phases are part of KM 3.2.0
7 JSON Schema KM name attribute removed 2.13.0
6 JSON Schema Multi-choice question type added 2.11.0
5 JSON Schema Move event 2.0.0
4 JSON Schema Refactored KM, optional chapter text 1.10.0
3 JSON Schema Changed integration question fields 1.8.0
2 JSON Schema Changed phases representation 1.7.0
1 JSON Schema Initial versioned metamodel 1.6.0

Document Context

Document Context is provided to the document templates by document worker. It contains all relevant data about
project/questionnaire with replies, related knowledge model, author, and more. As KM evolves, the context may evolve
as well. It is versioned using the Template metamodel version number. A document template must support the meta-
model that is in the current FAIR Wizard version. It is needed to know how the document context looks like especially
for Document Template Development.

Metamodel Version Schema file Changes (brief) Since
13 JSON Schema Removed states from templates 4.1.0
12 JSON Schema Optional Integration fields 4.1.0
11 JSON Schema Change template metadata 3.20.0
10 JSON Schema New question value types 3.12.0
9 JSON Schema Enhanced integration (e.g. widget type) 3.10.0
8 JSON Schema Annotations change 3.8.0
7 JSON Schema Project tags and description 3.7.0
6 JSON Schema Integrations with item template 3.6.0
5 JSON Schema Annotations 3.5.0
4 JSON Schema Metrics and phases 3.2.0
3 JSON Schema Project versions 2.12.0
2 JSON Schema Reply provenance 2.6.0
1 JSON Schema Initial versioned metamodel 2.5.0

116 Chapter 1. Structure of the Guide

https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/km-package/kmp_schema_v14.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/km-package/kmp_schema_v13.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/km-package/kmp_schema_v12.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/km-package/kmp_schema_v11.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/km-package/kmp_schema_v10.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/km-package/kmp_schema_v9.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/km-package/kmp_schema_v8.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/km-package/kmp_schema_v7.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/km-package/kmp_schema_v6.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/km-package/kmp_schema_v5.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/km-package/kmp_schema_v4.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/km-package/kmp_schema_v3.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/km-package/kmp_schema_v2.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/km-package/kmp_schema_v1.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/doc-context/doc_context_schema_v13.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/doc-context/doc_context_schema_v12.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/doc-context/doc_context_schema_v11.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/doc-context/doc_context_schema_v10.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/doc-context/doc_context_schema_v9.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/doc-context/doc_context_schema_v8.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/doc-context/doc_context_schema_v7.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/doc-context/doc_context_schema_v6.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/doc-context/doc_context_schema_v5.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/doc-context/doc_context_schema_v4.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/doc-context/doc_context_schema_v3.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/doc-context/doc_context_schema_v2.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/doc-context/doc_context_schema_v1.json

FAIR Wizard, Release 4.6

Template (.json file)

Each template has its descriptor file template.json which contains all the information about the template, its for-
mat(s) and steps how to produce the document(s). It is also versioned by the Template metamodel version number.
This file also contains the actual number of the supported version. . . With local Document Template Development, we
will need to manage the file according to the schema; however, when Document Template Editors are used, we will
define it using forms directly in FAIR Wizard.

Note: Between versions 1 and 5, the structure of template.json is still the same. Only the document context has
been changed.

Metamodel Version Schema file Changes (brief) Since
13 JSON Schema Removed states from templates 3.20.0
12 JSON Schema Optional Integration fields 3.12.0
11 JSON Schema Change template metadata 3.20.0
10 JSON Schema New question value types 3.12.0
9 JSON Schema Enhanced integration (e.g. widget type) 3.10.0
8 JSON Schema Annotations change 3.8.0
7 JSON Schema Project tags and description 3.7.0
6 JSON Schema Integrations with item template 3.6.0
5 JSON Schema Annotations 3.5.0
4 JSON Schema Metrics and phases 3.2.0
3 JSON Schema Project versions 2.12.0
2 JSON Schema Reply provenance 2.6.0
1 JSON Schema Initial versioned metamodel 2.5.0

1.6.2 Document Template Development

Document templates allows to specify how to export a questionnaire in form of a textual file. It is a highly flexible
element of the tool; however, the development requires basic programming skills with Jinja2 templating language. We
can develop the document templates either on our local computer (traditional development with text editor or IDE) with
use of the Template Development Kit (TDK) or directly in FAIR Wizard using Document Template Editors.

Every document template is based on the template specification and typically uses the document context to query
information from a project (questionnaire replies, knowledge model, metadata, etc.) to create a document.

Examples

• ds-wizard/questionnaire-report-template

• ds-wizard/madmp-template

• ds-wizard/horizon-europe-dmp-template

1.6. Development 117

https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/template-json/template_json_schema_v13.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/template-json/template_json_schema_v12.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/template-json/template_json_schema_v11.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/template-json/template_json_schema_v10.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/template-json/template_json_schema_v9.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/template-json/template_json_schema_v8.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/template-json/template_json_schema_v7.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/template-json/template_json_schema_v6.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/template-json/template_json_schema_v5.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/template-json/template_json_schema_v4.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/template-json/template_json_schema_v3.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/template-json/template_json_schema_v2.json
https://github.com/ds-wizard/dsw-schemas/blob/master/schemas/template-json/template_json_schema_v1.json
https://github.com/ds-wizard/questionnaire-report-template
https://github.com/ds-wizard/madmp-template
https://github.com/ds-wizard/horizon-europe-dmp-template

FAIR Wizard, Release 4.6

Document Context

Note: To work efficiently with the Document Context, you want to use object instead of the JSON-like one. Please
read through DocumentContext.md directly (select different version if needed).

Document context is an object that carries all information related to a FAIR Wizard questionnaire in order to produce a
document. To investigate it, it is the best to use Questionnaire Report template with JSON format. The core fields are:

• config = object with FAIR Wizard configuration related to documents, e.g., clientUrl for referring to the
FAIR Wizard

• createdAt = timestamp when the document was created

• createdBy = object describing author of the document

• knowledgeModel = object describing used KM for the questionnaire

– chapterUuids = list of UUIDs for chapters

– integrationUuids = list of UUIDs for integrations

– tagUuids = list of UUIDs for tags

– entities = contains questions, answers, and other maps with UUID-entity pairs

– name = name of the knowledge model

– uuid = UUID of the knowledge model

• level = current desirability level selected for the questionnaire

• levels = list of desirability levels possible

• metrics = list of available metrics

• organization = object describing organization that runs the FAIR Wizard

• package = object with metadata about the KM package such as version, name, or description

• questionnaireName = name of the questionnaire

• questionnaireReplies = map of replies with path-reply pairs, each reply has type and value

• questionnaireUuid = UUID of the questionnaire

• report = object that contains report for the questionnaire that contains computed information about number of
answered questions as well as metric values

• updatedAt = timestamp when the document was last updated

• uuid = UUID of the document

This structure is provided to a Jinja template in Step: jinja and outputted from Step: json. We can use the JSON step
to observe the actual content of the document context (structure as well as the values). Finally, we can also check
Metamodel Schemas (the relevant JSON schema for document context).

118 Chapter 1. Structure of the Guide

https://github.com/ds-wizard/engine-tools/blob/develop/packages/dsw-document-worker/support/DocumentContext.md

FAIR Wizard, Release 4.6

Objectified Document Context

It is possible to easily turn the JSON-like / tree-structured document context into objects with additional helper relations,
attributes, methods, and many more to ease up the template development:

{%- set dc = ctx|to_context_obj -%}

• All data types are using Python, e.g., str is textual string, Optional[str] is a string or None, list[str] is a
list of strings.

• We use snake_case for naming of attributes and variables, PascalCase is used for class names.

• datetime is the standard datetime module.

Diagram

We provide the structure visualized on a class diagram (right-click and open in to tab to enlarge):

Entities

Here is an interlinked description of each entity and its attributes and links. There are also aliases that are convenient
shorthands to make template more concise.

1.6. Development 119

https://docs.python.org/3/library/datetime.html#datetime-objects

FAIR Wizard, Release 4.6

DocumentContext

• config (ContextConfig)

• current_phase (Optional[Phase])

• document (Document)

• km (KnowledgeModel)

• organization (Organization)

• package (Package)

• questionnaire (Questionnaire)

• report (Report)

Aliases:

• e (KnowledgeModelEntities) - same as km.entities

• doc (Document) - same as document

• org (Organization) - same as organization

• pkg (Package) - same as package

• qtn (Questionnaire) - same as questionnaire

• replies (RepliesContainer) - same as questionnaire.replies

ContextConfig

• client_url (str) - base URL of the FAIR Wizard application (client app)

Document

• uuid (str)

• created_at (datetime)

• updated_at (datetime)

Organization

• id (str)

• name (str)

• description (Optional[str])

• affiliations (list[str])

120 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Package

• id (str) - full ID of KM Package

• organization_id (str)

• km_id (str)

• version (str)

• versions (list[str])

• name (str)

• description (Optional[str])

• created_at (datetime)

Questionnaire

• uuid (str)

• name (str)

• version (Optional[QuestionnaireVersion])

• versions (list[QuestionnaireVersion])

• phase (Optional[Phase])

• replies (RepliesContainer)

• created_by (User)

QuestionnaireVersion

• uuid (str)

• event_uuid (str)

• name (str)

• description (Optional[str])

• created_by (SimpleAuthor)

• created_at (datetime)

• updated_at (datetime)

User

• uuid (str)

• first_name (str)

• last_name (str)

• email (str)

• role (str) - one of: admin, dataSteward, researcher

• image_url (Optional[str])

1.6. Development 121

FAIR Wizard, Release 4.6

• affiliation (Optional[str])

• permissions (list[str])

• sources (list[str])

• created_at (datetime)

• updated_at (datetime)

SimpleAuthor

• uuid (str)

• first_name (str)

• last_name (str)

• image_url (Optional[str])

• gravatar_hash (Optional[str])

Report

• uuid (str)

• total_report (ReportItem)

• chapter_reports (list[ReportItem])

• created_at (datetime)

• updated_at (datetime)

ReportItem

• indications (list[ReportIndication])

• metrics (list[ReportMetric])

• chapter (Optional[Chapter]) - set if it is a chapter report

ReportIndication

• indication_type (str) - one of: PhasesAnsweredIndication, AnsweredIndication (use alias)

• answered (int) - number of answered questions

• unanswered (int) - number of unanswered questions

Aliases:

• total (int) - answered + unanswered

• percentage (float) - answered / total (handles zero division, number between 0.0 and 1.0)

• is_for_phase (bool) - if it is a phase-related indication

• is_overall (bool) - if it is an overall indication (not phase-related)

122 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

ReportMetric

• measure (float) - number between 0.0 and 1.0

• metric (Metric)

KnowledgeModel

• uuid (str)

• annotations (dict[str,str])

• entities (KnowledgeModelEntities)

• chapters (list[Chapter])

• integrations (list[Integration])

• metrics (list[Metric])

• phases (list[Phase])

• tags (list[Tag])

Aliases:

• e (KnowledgeModelEntities) - same as entities

• a (dict[str,str]) - same as annotations

Notes:

• Equality of all KM entities is being done using the uuid comparison under the hood.

• All KM entities that have annotations have also the a alias.

KnowledgeModelEntities

Container holding all types of Knowledge Model entities within UUID-key dictionaries:

• answers (dict[str,Answer])

• chapter (dict[str,Chapter])

• choices (dict[str,Choice])

• experts (dict[str,Expert])

• integrations (dict[str,Integration])

• metrics (dict[str,Metric])

• phases (dict[str,Phase])

• questions (dict[str,Question])

• references (dict[str,Reference])

• tags (dict[str,Tag])

1.6. Development 123

FAIR Wizard, Release 4.6

Chapter

• uuid (str)

• title (str)

• text (Optional[str]) - possibly Markdown text

• questions (list[Question])

• reports (list[ReportItem])

• annotations (dict[str,str])

Question

Superclass with common attributes for all types of questions. You always get a more specific one and never just a
Question.

• uuid (str)

• type (str)

• title (str)

• text (Optional[str])

• required_phase (Optional[Phase])

• is_required (bool) - if the question is required in the current phase

• replies (dict[str,Reply]) - path-key dictionary of replies to the question

• experts (list[Expert])

• references (list[Reference])

• tags (list[Tag])

• parent (Union[Chapter,ListQuestion,Answer])

• annotations (dict[str,str])

Aliases:

• url_references (list[URLReference])

• resource_page_references (list[ResourcePageReference])

Notes:

• Parent of a question can be of multiple kinds, you may use the of_type test to check what it is if needed.

124 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

ValueQuestion

• value_type (str) - type of value, use alias

Aliases:

• is_string (bool)

• is_text (bool)

• is_number (bool)

• is_date (bool)

IntegrationQuestion

• integration (Integration)

• props (dict[str,str])

OptionsQuestion

• answers (list[Answer])

MultiChoiceQuestion

• choices (list[Choice])

ListQuestion

• followups (list[Question])

Answer

• uuid (str)

• label (str)

• advice (Optional[str]) - possibly Markdown text

• metric_measures (list[MetricMeasure])

• followups (list[Question])

• parent (OptionsQuestion)

• annotations (dict[str,str])

1.6. Development 125

FAIR Wizard, Release 4.6

MetricMeasure

Indication of how an answer affects a certain metric.

• measure (float) - value between 0.0 and 1.0 (inclusive)

• weight (float) - value between 0.0 and 1.0 (inclusive)

• metric (Metric)

Choice

• uuid (str)

• label (str)

• parent (MultiChoiceQuestion)

• annotations (dict[str,str])

Expert

• uuid (str)

• name (str)

• email (str)

• annotations (dict[str,str])

Reference

As for the Question class, Reference is also a superclass and you will always get an object of its subclass.

• uuid (str)

• type (str)

• annotations (dict[str,str])

URLReference

• label (str)

• url (str)

126 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

ResourcePageReference

• short_uuid (str)

• url (str) - URL composed using client_url from ContextConfig

Metric

• uuid (str)

• title (str)

• abbreviation (str)

• description (Optional[str]) - possibly Markdown text

• annotations (dict[str,str])

Phase

• uuid (str)

• title (str)

• description (Optional[str]) - possibly Markdown text

• order (int) - order of the phase within the KM

• annotations (dict[str,str])

Integration

• uuid (str)

• id (str)

• name (str)

• item_url (Optional[str])

• logo (Optional[str])

• props (dict[str,str])

• rq_method (str)

• rq_url (str)

• rq_headers (dict[str,str])

• rq_body (str)

• rs_list_field (Optional[str])

• rs_item_id (Optional[str])

• rs_item_template (str)

• annotations (dict[str,str])

Operations:

• item(item_id: str) -> Optional[str] - URL of an item identified by string ID

1.6. Development 127

FAIR Wizard, Release 4.6

Tag

• uuid (str)

• name (str)

• description (Optional[str]) - possibly Markdown text

• color (str)

• annotations (dict[str,str])

RepliesContainer

Wrapper around a path-key dictionary of replies.

• replies (dict[str,Reply])

Operations:

• X[path: str] (Optional[Reply]) - you can get a reply using square brackets

• len(X) (int) - number of replies in the container

• get(path: str) -> Optional[Reply]

• iterate_by_prefix(path_prefix: str) -> Iterable[Reply] - O(n) iteration with filter

• iterate_by_suffix(path_suffix: str) -> Iterable[Reply] - O(n) iteration with filter

• values() -> Iterable[Reply]

• keys() -> Iterable[str]

• items() -> ItemsView[str,Reply]

Reply

Superclass with common attributes for all types of replies. You always get a more specific one and never just a Reply.

• path (str)

• fragments (list[str]) - UUIDs of the path (starting with chapter)

• type (str)

• created_at (datetime)

• created_by (SimpleAuthor)

• question (Question) - you can assume more specific type of Question based on a type of Reply

128 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

AnswerReply

• answer (Answer) - selected answer as the option

Aliases:

• value (str) - UUID of the answer (answer.uuid)

Notes:

• question is always OptionsQuestion

MultiChoiceReply

• choices (list[Choice]) - selected answer as the option

Aliases:

• value (list[str]) - list of UUIDs of the choices

Notes:

• question is always OptionsQuestion

• You can iterate directly over reply object(for choice in reply)

StringReply

• value (str)

Aliases:

• as_number (Optional[float]) - tries to cast the value to a number

• as_datetime (Optional[datetime]) - tries to cast the value to a timestamp

Notes:

• question is always ValueQuestion

ItemListReply

• items (list[str]) - list of item UUIDs (used in reply paths)

Aliases:

• value (list[str]) - same as items

Notes:

• question is always ListQuestion

• You can iterate directly over reply object (for item in reply)

1.6. Development 129

FAIR Wizard, Release 4.6

IntegrationReply

• value (str)

• item_id (Optional[str]) - ID of item if selected using Integration

Aliases:

• id (Optional[str]) - same as item_id

• is_plain (bool) - entered by user ignoring the integration

• is_integration (bool) - selected by user using the integration

• url (Optional[str]) - item URL based Integration if selected from it

Template Development Kit

Note: Requirements for Local Template Development

• Your favorite text editor or IDE

• Template Development Kit (see below)

• FAIR Wizard application with your admin account

• Python 3.10+ (with pip) or Docker

Our Template Development Kit (TDK) provides a simple way how to work with templates locally. It is a CLI tool
written in Python.

Video Tutorial

This is a comprehensive video tutorial on how to use the Template Development Kit.

https://youtu.be/FFElv-e24NE

Installation

You can install it easily using pip from Python Package Index (PyPI). Optionally, you can use virtual environment or
other installation option described in the TDK repository.

pip install dsw-tdk
dsw-tdk --help

It is also possible to use datastewardshipwizard/dsw-tdk Docker image when you don’t have Python locally:

docker run datastewardshipwizard/dsw-tdk --help

130 Chapter 1. Structure of the Guide

https://youtu.be/FFElv-e24NE
https://pip.pypa.io/en/stable/installation/
https://pypi.org/project/dsw-tdk/
https://github.com/ds-wizard/engine-tools/tree/develop/packages/dsw-tdk
https://hub.docker.com/r/datastewardshipwizard/dsw-tdk

FAIR Wizard, Release 4.6

Commands

There are these basic commands:

• new = create a new template project, it launches a simple interactive wizard for template metadata

• list = list all templates (latest versions) from configured FAIR Wizard

• get = download a template project with specified template ID from FAIR Wizard

• put = upload the local template project to FAIR Wizard (once or continually on-change when --watch flag is
used)

• verify = check the metadata of the local template project

• package = create a ZIP distribution package from the local template project (ZIP is importable to FAIR Wizard
via its web interface)

Default template directory is current one for put, verify, and package. But new and get will create a new folder
according to the template ID if not explicitly set in other way.

You can use --help to find out details:

dsw-tdk new --help

Environment variables and .env file

You can use environment variables to authenticate:

• DSW_API_URL = URL of FAIR Wizard API with which you want to communicate. Hover mouse over your profile
name to find the About section where URL is specified.

• DSW_API_KEY = your API Key. Hover mouse over your profile name, click on Edit Profile and then navigate to
API Keys From there, you can generate a new API Key for the authentication.

To make this even easier, you can store those in .env file in the project root and it will be loaded automatically. Or you
can specify the path to a .env file:

dsw-tdk --dot-env /path/to/.env list

Document Template Specification

Each document template in FAIR Wizard has metadata stored. If developing locally with Template Development Kit,
you can find and manage them in template.json file. In case of using Document Template Editors, you can manage
them on Settings tab.

Specification Structure

• id = composed full ID of the template (organizationId:templateId:version)

• organizationId = identifier of organization developing the template (lowercase, numerics, dot)

• templateId = identifier of template (lowercase, numerics, dash)

• version = version (semver) in X.Y.Z format where X, Y, and Z are non-negative numbers

• name = name of the template

1.6. Development 131

FAIR Wizard, Release 4.6

• description = short description of the template

• license = name of the used license

• readme = longer description usually containing changelog

• metamodelVersion = supported version of template metamodel, it affects with which FAIR Wizard version is
can be used

• allowedPackages = list of package filters (see Package Filters) to specify supported packages

• formats = list of available formats (see below Formats) with specified steps for generation

• _tdk = TDK configuration for local development (not stored in FAIR Wizard, see TDK Config)

Note: TDK handles id and readme for you, so you can skip them and naturally use README.md file separately.

Package Filters

For filtering, the null value serves as wildcard, i.e., filter with all null values means that all packages are allowed.

• orgId: identifier of organization (e.g. myorg)

• kmId: identifier of knowledge model (e.g. root)

• minVersion: minimal package version (in format X.Y.Z, inclusive)

• maxVersion: maximal package version (in format X.Y.Z, inclusive)

Formats

A template can describe how to produce several formats, each with these metadata:

• uuid: UUID of the format (within template)

• name: display name of the format

• icon: icon style (CSS classes), preferably Font Awesome, e.g. fas fa-file-word

• steps: list of steps for document worker to produce the document with this format, each step has name and
options (see Steps)

Steps

Each step of template produces output based on its (optional) input and options. Steps can be chained in order to
generate the document and eventually transform it. All steps have always name and options based on one of the
desired step. There are the details for steps supported by the document worker component:

132 Chapter 1. Structure of the Guide

https://fontawesome.com/v5/search

FAIR Wizard, Release 4.6

Step: archive

Step that puts file from previous step to an archive file (ZIP or TAR).

Input

Any input file provided from the previous step.

Output

ZIP or TAR archive (based on options) containing the file from the previous step.

Options

• inputFileDst = destination of the file inside the archive (POSIX-like path including filename)

• (optional) type = whether to produce zip or tar (defaults to zip)

• (optional) compression = compression method to be used (none, gzip, bzip2, lzma; defaults to none)

• (optional) compressionLevel = value specifying level of compression (0 to 9; defaults to 9)

• (optional) format = only for tar it allows to specify format (ustar, gnu, pax; defaults to pax)

Notes

• Currently, only a single file can be put into the produced archive.

• Value of compressionLevel must be provided as a string (even though it is a numeric value).

• For zip, zipfile standard library from Python is used.

• For tar, tarfile standard library from Python is used.

• For bzip2, if compressionLevel is set to 0, it is automatically fixed to value 1.

Example

{
"name": "archive",
"options": {
"type": "tar",
"compression": "bzip2",
"compressionLevel": "5",
"format": "gnu",
"inputFileDst": "example/file.html"

}
}

1.6. Development 133

https://docs.python.org/3/library/zipfile.html
https://docs.python.org/3/library/tarfile.html

FAIR Wizard, Release 4.6

Step: enrich-docx

Enrichment step for MS Word (docx) documents.

Input

Gets a docx document as input.

Output

Results in a docx document as input.

Options

Options are used as a dictionary for rewrites with the following syntax:

• Keys can be prefixed with:

– rewrite: and followed by path of file to be rewritten

– (currently there are no other prefixes then ``rewrite``)

• Values can be prefixed with:

– static: and followed by path to a file in a template; then it is used as-is to rewrite the original file in docx

– render: and followed by path to a file in a template; then it is rendered first as jinja template with
document context provided and result is used to rewrite the original file in docx

Notes

• Internally, the step unpacks the provided docx file, makes adjustments on the level of internal XML (and other)
files, and packs it back to docx.

• To figure out what to rewrite, you should first generate the docx later used as input, unzip it and go through the
contents.

• A good way to adjust things is to put there some placeholder first (e.g. via reference.docx passed to pandoc)
and then just adjust the placeholder with other / dynamic content.

• Paths to files in a template are relative to template root, i.e. directory with template.json.

• It does not matter if the file to be rewritten is missing in the docx, then the desired file is simply added.

• The document context is provided in ctx variable, other variables, filters, and tests are documented in other
documents (same as for jinja step).

134 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Example

{
"name": "enrich-docx",
"options": {
"rewrite:word/footer1.xml": "static:src/docx/footer1.xml",
"rewrite:word/header1.xml": "render:src/docx/header1.xml.j2"

}
}

Step: excel

Step producing Excel spreadsheets from JSON file with instructions.

Input

JSON file containing instructions how to construct the desired Excel spreadsheet as described further in this section.

Properties

It allows to set both basic and custom properties of the workbook / spreadsheet.

{
"properties": {
"document": {
"title": "My example workbook",
"subject": "",
"author": "Albert Einstein",
"manager": "",
"company": "ACME",
"category": "",
"keywords": "test,example,foo,bar",
"created": "2018-01-01",
"comments": ""

},
"custom": [
{
"projectUuid": "...",

}
]

}
}

1.6. Development 135

https://xlsxwriter.readthedocs.io/workbook.html#set_properties
https://xlsxwriter.readthedocs.io/workbook.html#set_custom_property

FAIR Wizard, Release 4.6

Options

It allows to specify various workbook options.

{
"options": {
"strings_to_numbers": true,
"strings_to_urls": true,
"use_future_functions": true,
"max_url_length": 255,
"nan_inf_to_errors": true,
"default_date_format": null,
"remove_timezone": true,
"use_zip64": false,
"date_1904": false,
"calc_mode": "auto",
"read_only_recommended": false,
"active_sheet": 0,
"vba_name": "foo",
"size": {
"width": 0,
"height": 0

},
"tab_ratio": 50

}
}

Notes:

• active_sheet is an index of sheet to be active when document is opened.

• size sets the default window size.

• tab_ratio sets ratio between the worksheet tabs and the horizontal slider.

Definitions

It allows to define a name to be then used as a variable (see define_name).

{
"definitions": {
"Exchange_rate": "=0.96"

}
}

136 Chapter 1. Structure of the Guide

https://xlsxwriter.readthedocs.io/workbook.html#constructor
https://xlsxwriter.readthedocs.io/workbook.html#set_size
https://xlsxwriter.readthedocs.io/workbook.html#tab_ratio
https://xlsxwriter.readthedocs.io/workbook.html#define_name

FAIR Wizard, Release 4.6

Formats

It specifies formats in the spreadsheets that can be then used for cells in sheets. Possible options can be found in the
documentation.

{
"formats": {
"myBoldFormat": {
"bold": true

}
}

}

The example above creates a format named myBoldFormat that has bold text.

Charts

It specifies charts that can be then inserted inside sheets or used as chartsheets.

The options are documented here. Basically, each chart must have a unique name and then can have some options,
series, and axis (e.g. x axis).

Finally, there are some basic and advanced settings:

• Basic: size, title, legend, chartarea, plotarea, style, table

• Advanced: combine, up_down_bars, drop_lines, high_low_lines, show_blanks_as, show_hidden_data

{
"name": "myChartA",
"combine": "myChartB",
"options": {
"type": "bar",
"subtype": "percent_stacked"

},
"series": [
{
"name": "=Sheet1!B1",
"categories": "=Sheet1!A2:A7",
"values": "=Sheet1!B2:B7"

}
],
"axis": {
"x": {"name": "Test number"},
"y": {"name": "Sample length (mm)"}

}
}

1.6. Development 137

https://xlsxwriter.readthedocs.io/format.html#format-methods-and-format-properties
https://xlsxwriter.readthedocs.io/chart.html
https://xlsxwriter.readthedocs.io/chart.html#chart-add-series
https://xlsxwriter.readthedocs.io/chart.html#chart-set-x-axis
https://xlsxwriter.readthedocs.io/chart.html#chart-set-size
https://xlsxwriter.readthedocs.io/chart.html#chart-set-title
https://xlsxwriter.readthedocs.io/chart.html#chart-set-legend
https://xlsxwriter.readthedocs.io/chart.html#chart-set-chartarea
https://xlsxwriter.readthedocs.io/chart.html#chart-set-plotarea
https://xlsxwriter.readthedocs.io/chart.html#chart-set-style
https://xlsxwriter.readthedocs.io/chart.html#chart-set-table
https://xlsxwriter.readthedocs.io/chart.html#chart-combine
https://xlsxwriter.readthedocs.io/chart.html#chart-set-up-down-bars
https://xlsxwriter.readthedocs.io/chart.html#chart-set-drop-lines
https://xlsxwriter.readthedocs.io/chart.html#chart-set-high-low-lines
https://xlsxwriter.readthedocs.io/chart.html#chart-show-blanks-as
https://xlsxwriter.readthedocs.io/chart.html#chart-show-hidden-data

FAIR Wizard, Release 4.6

sheets

It is the main part specifying a list of sheets in the workbook, where each sheet has name (optional), type (optional,
work or chart), options and then based on the type it has either chart (for chartsheet) or data (for worksheet).
Some of the options are common for both chartsheet and datasheet. The order of sheets in the list corresponds to the
order in the Excel spreadsheet.

Chartsheet

A chartsheet simply refers to a chart (by its name) that should be placed in this chartsheet.

The possible options are:

• Basic: first_sheet, protect, zoom, tab_color, page_view, select, hide

• Print: orientation (landspace or portrait), paper, margins, header, footer, center_horizontally, cen-
ter_vertically

{
"name": "Nice chart",
"type": "chart",
"chart": "myChartA",
"options": {
"tab_color": "red"

}
}

Worksheet

Traditional worksheet with many options and data placed into cells. There are more options when compared to
chartsheets.

The possible options are:

• Basic (common): first_sheet, protect, zoom, tab_color, page_view, select, hide

• Print (common): orientation (landspace or portrait), paper, margins, header, footer, center_horizontally, cen-
ter_vertically

• Basic: comments_author, hide_zero, hide_row_col_headers, right_to_left, hide_gridlines, ignore_errors,
vba_name

• Print (advanced): print_row_col_headers, print_area, print_across, fit_to_pages, start_page, print_scale,
print_black_and_white

• Special ranges: unprotect_ranges, top_left_cell, selection

• Repeats: repeat_rows, repeat_columns, default_row

• Paging: h_pagebreaks, v_pagebreaks, outline_settings

• Panes: split_panes, freeze_panes

• Filters: filter_column_lists each with col and filters, filter_columns each with col and criteria, autofilter
with range directly or first_row, first_col, last_row, last_col attributes (see docs)

138 Chapter 1. Structure of the Guide

https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-set-first-sheet
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-protect
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-set-zoom
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-set-tab-color
https://xlsxwriter.readthedocs.io/page_setup.html#set-page-view
https://xlsxwriter.readthedocs.io/worksheet.html#select
https://xlsxwriter.readthedocs.io/worksheet.html#hide
https://xlsxwriter.readthedocs.io/page_setup.html#set-landscape
https://xlsxwriter.readthedocs.io/page_setup.html#set-portrait
https://xlsxwriter.readthedocs.io/page-setup.html#set-paper
https://xlsxwriter.readthedocs.io/page_setup.html#set-margins
https://xlsxwriter.readthedocs.io/page_setup.html#set-header
https://xlsxwriter.readthedocs.io/page_setup.html#set-footer
https://xlsxwriter.readthedocs.io/page_setup.html#worksheet-center-horizontally
https://xlsxwriter.readthedocs.io/page_setup.html#worksheet-center-vertically
https://xlsxwriter.readthedocs.io/page_setup.html#worksheet-center-vertically
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-set-first-sheet
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-protect
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-set-zoom
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-set-tab-color
https://xlsxwriter.readthedocs.io/page_setup.html#set-page-view
https://xlsxwriter.readthedocs.io/worksheet.html#select
https://xlsxwriter.readthedocs.io/worksheet.html#hide
https://xlsxwriter.readthedocs.io/page_setup.html#set-landscape
https://xlsxwriter.readthedocs.io/page_setup.html#set-portrait
https://xlsxwriter.readthedocs.io/page-setup.html#set-paper
https://xlsxwriter.readthedocs.io/page_setup.html#set-margins
https://xlsxwriter.readthedocs.io/page_setup.html#set-header
https://xlsxwriter.readthedocs.io/page_setup.html#set-footer
https://xlsxwriter.readthedocs.io/page_setup.html#worksheet-center-horizontally
https://xlsxwriter.readthedocs.io/page_setup.html#worksheet-center-vertically
https://xlsxwriter.readthedocs.io/page_setup.html#worksheet-center-vertically
https://xlsxwriter.readthedocs.io/worksheet.html#set_comments_author
https://xlsxwriter.readthedocs.io/worksheet.html#hide_zero
https://xlsxwriter.readthedocs.io/page_setup.html#hide_row_col_headers
https://xlsxwriter.readthedocs.io/worksheet.html#right_to_left
https://xlsxwriter.readthedocs.io/page_setup.html#hide_gridlines
https://xlsxwriter.readthedocs.io/worksheet.html#ignore_errors
https://xlsxwriter.readthedocs.io/workbook.html#set_vba_name
https://xlsxwriter.readthedocs.io/page_setup.html#print_row_col_headers
https://xlsxwriter.readthedocs.io/page_setup.html#print_area
https://xlsxwriter.readthedocs.io/page_setup.html#print_across
https://xlsxwriter.readthedocs.io/page_setup.html#fit_to_pages
https://xlsxwriter.readthedocs.io/page_setup.html#set_start_page
https://xlsxwriter.readthedocs.io/page_setup.html#set_print_scale
https://xlsxwriter.readthedocs.io/page_setup.html#print_black_and_white
https://xlsxwriter.readthedocs.io/worksheet.html#unprotect_range
https://xlsxwriter.readthedocs.io/worksheet.html#set_top_left_cell
https://xlsxwriter.readthedocs.io/worksheet.html#set_selection
https://xlsxwriter.readthedocs.io/page_setup.html#repeat_rows
https://xlsxwriter.readthedocs.io/page_setup.html#repeat_columns
https://xlsxwriter.readthedocs.io/worksheet.html#set_default_row
https://xlsxwriter.readthedocs.io/page_setup.html#set_h_pagebreaks
https://xlsxwriter.readthedocs.io/page_setup.html#set_v_pagebreaks
https://xlsxwriter.readthedocs.io/worksheet.html#outline_settings
https://xlsxwriter.readthedocs.io/worksheet.html#split_panes
https://xlsxwriter.readthedocs.io/worksheet.html#freeze_panes
https://xlsxwriter.readthedocs.io/worksheet.html#filter_column_list
https://xlsxwriter.readthedocs.io/worksheet.html#filter_column
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-autofilter
https://xlsxwriter.readthedocs.io/working_with_autofilters.html

FAIR Wizard, Release 4.6

• Merge ranges: merge_ranges list can be used to merge cells (range or combination of first_row, first_col,
last_row, last_col attributes) together and apply a format (via format reference attribute), also contents can
be set via data attribute

• Data validations: data_validations list can be used to validate data in cell ranges (see docs)

• Conditional formats: conditional_formats list can be used to define conditional formats on cell ranges (see docs)

• Tables: tables list can be used to define formatted tables (see docs)

• Sparklines: sparklines list (see docs)

• Row/col sizing: columns, column_pixels, rows, and row_pixels lists can be used to adjust cell sizing (unfortu-
nately automatic sizing is not possible)

• Background: background can be used to set worksheet background via filename or b64bytes attributes

Inserting data

In JSON as part of worksheet’s attribute data, you can in the list specify data to be inserted to cells in four ways (type):

• cell writes cell according to the possibly specifiedsubtype (see below)

• row writes row using provided data as a list

• column writes column using provided data as a list

• grid writes rows using provided data as a list of lists (list of rows)

For data, there are the following subtypes possible (for type set to cell):

• (unspecified) tries to directly all write with provided arguments, type should be then decided based on provided
values and attributes

• string writes string from value

• number writes number from numeric value

• datetime writes datetime; it tries to parse date/datetime value from string as JSON does not have a format for
datetime, standard ISO formats are recommended (e.g. 2022-12-24 or 2022-12-24T12:00:00Z)

• formula writes formula with formula in value and optional result value

• blank writes blank value (no attributes except format)

• boolean writes boolean value with boolean value (i.e. true or false)

• url writes URL value with url, value, and tip attributes

• rich_stringwrites rich string that allows formatting; for using format in the string_parts use prefix !fmt::
before name of the desired format

All options above may specify format (refer to defined format via its name).

{
"type": "cell",
"subtype": "string",
"cell": "A1",
"value": "X"

}

1.6. Development 139

https://xlsxwriter.readthedocs.io/worksheet.html#merge_range
https://xlsxwriter.readthedocs.io/worksheet.html#data_validation
https://xlsxwriter.readthedocs.io/working_with_data_validation.html
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-conditional-format
https://xlsxwriter.readthedocs.io/example_conditional_format.html#ex-cond-format
https://xlsxwriter.readthedocs.io/worksheet.html#add_table
https://xlsxwriter.readthedocs.io/working_with_tables.html
https://xlsxwriter.readthedocs.io/worksheet.html#add_sparkline
https://xlsxwriter.readthedocs.io/working_with_sparklines.html
https://xlsxwriter.readthedocs.io/worksheet.html?highlight=column_pixels#set_column
https://xlsxwriter.readthedocs.io/worksheet.html#set_column_pixels
https://xlsxwriter.readthedocs.io/worksheet.html?highlight=column_pixels#set_row
https://xlsxwriter.readthedocs.io/worksheet.html#set_row_pixels
https://xlsxwriter.readthedocs.io/worksheet.html#set_background
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-write
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-write-row
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-write-column
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-write-row
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-write
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-write-string
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-write-number
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-write-datetime
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-write-formula
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-write-blank
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-write-boolean
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-write-url
https://xlsxwriter.readthedocs.io/worksheet.html#worksheet-write-rich-string

FAIR Wizard, Release 4.6

{
"type": "column",
"subtype": "string",
"cell": "A3",
"data": [
"ID",
"Name",
"Created at",
"Author"

],
"format": "myBoldFormat"

}

{
"type": "grid",
"row": 5,
"col": 5,
"data": [
["A", "B", "C"],
["D", "E", "F"]

]
}

Inserting other elements

Aside from data in cell, there is also possibility to insert other elements to the worksheet (type vales):

• button with options such as macro or caption

• textbox with text and options such as styling or offset in pixels

• comment with comment text and options such as color or author

• chart with chart (name) and options

• image with filename, b64bytes, and options

All of these are used with corresponding type and are placed to desired cell (or col/row indices).

{
"type": "button",
"cell": "B5",
"options": {
"caption": "Press Me"

}
}

140 Chapter 1. Structure of the Guide

https://xlsxwriter.readthedocs.io/worksheet.html#insert_button
https://xlsxwriter.readthedocs.io/worksheet.html#insert_textbox
https://xlsxwriter.readthedocs.io/worksheet.html#write_comment
https://xlsxwriter.readthedocs.io/worksheet.html#insert_chart
https://xlsxwriter.readthedocs.io/worksheet.html#insert_image

FAIR Wizard, Release 4.6

Header, Footer, Images

To allow easily add figures, those can be supplied as BASE64 encoded data directly via JSON as shown in the examples
below.

For header and footer, the syntax of content is according to the documentation.

{
"header": {
"content": "&L&G &CExample Excel Document",
"options": {
"image_left": "logo.png",
"image_data_left": "..."

}
}

}

{
"name": "bg-test",
"options": {
"background": { "b64bytes": "..." }

}
}

{
"type": "image",
"cell": "D2",
"filename": "logo.png",
"b64bytes": "...",
"options": {
"x_scale": 0.6,
"y_scale": 0.6,
"url": "https://ds-wizard.org"

}
}

vba_projects

List of VBA projects (with macros) to be embedded in the spreadsheet.

{
"vba_projects": [
{
"project": "./vbaProject.bin",
"is_stream": false

}
]

}

1.6. Development 141

https://xlsxwriter.readthedocs.io/page_setup.html#set_header

FAIR Wizard, Release 4.6

Output

Desired Excel spreadsheet based on instructions from input JSON, it can be one the following formats (whether it uses
macros or not):

• application/vnd.openxmlformats-officedocument.spreadsheetml.sheet (extension .xlsx)

• application/vnd.ms-excel.sheet.macroEnabled.12 (extension .xlsm)

Options

No options, everything comes from the input JSON file

Notes

• XlxsWriter library is used to construct Excel spreadsheet.

• Most likely this step will follow jinja step that constructs the JSON file.

Example

{
"name": "excel",
"options": {}

}

Step: jinja

Renders requested Jinja2 template with document context and optionally other data.

Input

If not used as a first step, then the previous document is available from document variable.

Output

Results to a file of specified type (via content-type option) and file extension (via extension option).

142 Chapter 1. Structure of the Guide

https://xlsxwriter.readthedocs.io/

FAIR Wizard, Release 4.6

Options

• template = path to template file to be rendered

• content-type = MIME type of resulting file

• extension = file extension for the produced file (without leading dot)

Optional:

• jinja-ext = comma-separated list of Jinja2 extensions to be enabled (supported values: debug)

• i18n-dir = location (relative to template root) of translations

• i18n-domain = domain string of translations

• i18n-lang = language code used in the template

• extras = comma-separated list of related entities to query in addition to Document Context (possible values:
submissions, questionnaire); values will be added to extras attribute of the document context

Template (Jinja2)

Variables

The following variables are set:

• ctx = contains JSON-like plain Document Context (possibly with extras attribute, if configured)

• secrets = dictionary of secret values, only if enabled by configuration file

• requests = wrapper of requests module only if enabled by configuration file

Filters

Within Jinja templates, you can use so-called filters.Basically, those are functions applied to a first argument using pipe
| symbol.

Builtin Filters

There are several widely used builtin filters directly in Jinja.

Value Conversion

We provide several filters that can be used for conversion of values:

• datetime_format = Formats timestamp

– Example: x.created_at|datetime_format("%d/%m/%y")

– Arguments:

∗ iso_timestamp - datetime or ISO 8601 str

∗ fmt - datetime format passed to strftime

• of_alphabet = Converts integer to characters

1.6. Development 143

https://jinja.palletsprojects.com/en/3.0.x/extensions/
https://requests.readthedocs.io/en/latest/
https://jinja.palletsprojects.com/en/3.0.x/templates/#filters
https://jinja.palletsprojects.com/en/3.0.x/templates/#builtin-filters
https://docs.python.org/3/library/datetime.html#datetime.date.strftime

FAIR Wizard, Release 4.6

– Example: x|of_alphabet

– It prints a (for 0) to z and then continues with aa, ab, etc.

– Arguments:

∗ n - integer >= 0, usually some index

• roman = Converts integer to Roman numeral

– Example: x|roman

– Arguments:

∗ n - integer >= 0, usually some index

• markdown = Converts markdown to HTML

– Example: x|roman

– Arguments:

∗ md_text - string containing Markdown syntax

• dot = Ends sentence if not already ended

– Example: "This sentence has no end"|dot

– Arguments:

∗ text

• extract = Extracts values from object by having keys

– Example: entities.questions|extract([uuid1, uuid2, uuid3])

– Arguments:

∗ obj - object for getting values (typically dict)

∗ keys - list of keys to retrieve

Reply Helpers

These filters are handy when you need to work with repliesMap from the plain JSON-like context.

• reply_path = Joins list of UUIDs into a path

– Example: [uuid1, uuid2, uuid3]|reply_path

– Arguments:

∗ uuids - list of UUIDs

• find_reply = Tries to find a reply value using a path

– Example: replies|find_reply(path, "list")

– Arguments: - replies - dict with replies - path - list of UUIDs or path-string - xtype (optional) - desired
type of return value ("string", "int", "float", "list")

• reply_str_value = Extracts string value from a reply if possible

– Returns an empty string if not possible to extract it from the reply. Suitable for AnswerReply,
StringReply and IntegrationReply.

– Example: reply|reply_str_value

144 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

– Arguments: - reply - object that might a reply

• reply_int_value = Extracts integer value from a reply if possible

– Returns zero if not possible to extract it from the reply. Suitable for StringReplywith numeric value type.

– Example: reply|reply_int_value

– Arguments:

∗ reply - object that might a reply

• reply_float_value = Extracts float value from a reply if possible

– Returns zero if not possible to extract it from the reply. Suitable for StringReplywith numeric value type.

– Example: reply|reply_float_value

– Arguments:

∗ reply - object that might a reply

• reply_items = Extracts list of strings from a reply if possible

– Returns empty list if not possible to extract it from the reply. Suitable for MultiChoiceReply and
ItemListReply.

– Example: reply|reply_items

– Arguments:

∗ reply - object that might a reply

Special

These filters are more complex and add various support to template development.

• to_context_obj = Converts plain context to well-defined objects

– This filter is used for easier transition and might be removed in the future.

– Arguments:

∗ ctx - plain JSON-like document context

Tests

Within Jinja templates, you can use so-called tests. Basically, those are helpers usable in conditions after is keyword:

{% if loop.index is divisibleby 3 %}
{# ... #}

{% endif %}

1.6. Development 145

https://jinja.palletsprojects.com/en/3.0.x/templates/#tests

FAIR Wizard, Release 4.6

Builtin Tests

There are several widely used builtin tests directly in Jinja.

Custom Tests

• not_empty = Checks if size of a collection is higher than 0

– Example: items is not_empty

• of_type = Checks if an object is instance of a certain type / class

– The name must be a string; however, it is case-insensitive. It also checks all superclasses.

– Example: parent is of_type "ListQuestion"

Notes

• All paths (e.g. for import or extends in Jinja2 templates are relative from the template root, i.e. directory with
template.json).

• The do Jinja2 extension is enabled.

• Using file extension .j2 or .jinja2 for templates is just a convention.

• The document context is provided in ctx variable, other variables, filters, and tests are documented in other
documents.

Example

{
"name" : "jinja",
"options" : {
"template" : "src/default.html.j2",
"content-type" : "text/html",
"extension" : "html"

}
}

Step: json

Trivial step that dumps document context to JSON file.

146 Chapter 1. Structure of the Guide

https://jinja.palletsprojects.com/en/3.0.x/templates/#builtin-tests
https://jinja.palletsprojects.com/en/3.0.x/extensions/#expression-statement

FAIR Wizard, Release 4.6

Input

No input from previous step (should be first step)

Output

Always results in a JSON file (application/json) with file extension .json.

Options

No options

Example

{
"name" : "json",
"options" : {}

}

Step: pandoc

Transformation step that converts Pandoc-compatible document formats.

Input

Gets a file from the previous step (otherwise it fails), format needs to be specified using from option.

Output

Results in a document in desired format specified using to option.

Options

• from = specification of the input format (passed to Pandoc via --from, see docs)

• to = specification of the output format (passed to Pandoc via --to, see docs)

• (optional) args = additional command line arguments passed to pandoc

• (optional, experimental) filters = additional Pandoc filters to be used, need to be located under /pandoc/
filters directory (or other set by PANDOC_FILTERS environment variable), comma separated

• (optional, experimental) template = Pandoc template to be used, need to be located under /pandoc/templates
directory (or other set by PANDOC_TEMPLATES environment variable)

1.6. Development 147

https://pandoc.org/MANUAL.html#general-options
https://pandoc.org/MANUAL.html#general-options
https://pandoc.org/MANUAL.html
https://pandoc.org/MANUAL.html#general-options
https://pandoc.org/MANUAL.html#general-options

FAIR Wizard, Release 4.6

Notes

• Pandoc filter pandoc-docx-pagebreakpy can be found in addons directory.

• Pandoc filter pandoc-docx-pagebreakpy will be removed with the next template metamodel version, use ``
for the filters option instead.

Example

{
"name" : "pandoc",
"options" : {
"from" : "html",
"to" : "docx",
"args": "--filter=pandoc-docx-pagebreakpy --reference-doc=src/reference.docx",
"filters": "docx-pagebreak.lua, docx-toc.lua"

}
}

Step: rdflib-convert

Transformation step that converts between RDF formats.

Input

Gets an RDF file from the previous step of one of the following formats: rdf (XML), nt, n3, ttl, trig, or json-ld
(specified using from option).

Output

Results in an RDF document of one of the following formats: rdf (XML), nt, n3, ttl, trig, or json-ld (specified
using from option).

Options

• from = specification of the input format (rdf, nt, n3, ttl, trig, json-ld)

• to = specification of the output format (rdf, nt, n3, ttl, trig, json-ld)

148 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Example

{
"name" : "rdflib-convert",
"options" : {
"from" : "ttl",
"to" : "rdf"

}
}

Step: weasyprint

Transformation step that converts HTML file from previous step to PDF using WeasyPrint.

Input

Gets HTML file from the previous step (otherwise it fails).

Output

Always results in a PDF file (application/pdf) with file extension .pdf.

Options

• (optional) render.presentational_hints = whether HTML presentational hints are followed (default:
False)

• (optional) render.optimize_size = specify what should be optimized ('', 'fonts', 'images', 'fonts,
images', default: 'fonts')

• (optional) render.forms = whether PDF forms have to be included (default: False)

• (optional) pdf.zoom = zoom value as a floating number (default: '1')

• (optional) pdf.variant = a PDF variant name

• (optional) pdf.version = a PDF version number

• (optional) pdf.custom_metadata = whether custom HTML metadata should be stored in the generated PDF

1.6. Development 149

https://weasyprint.org/

FAIR Wizard, Release 4.6

Notes

• Check the official WeasyPrint documentation and examples for more information.

Example

{
"name" : "weasyprint",
"options" : {
"render.optimize_size": "fonts,images",
"render.forms": "True",
"pdf.zoom": "1.2"

}
}

TDK Config

Those are local-only metadata used for development of the template. You can use them in versioned template.json
but those are never stored directly in FAIR Wizard.

• version: metadata version for needs of migrations

• readmeFile: files used to get content for readme of the template, usually README.md

• files: list of patterns to specify files that are part of the document template (it uses Git wildcard-match patterns,
so you can also exclude files or directories)

Template Metamodels

Here are described the changes in metamodel for template specification as well as document context so developers can
easily update their templates to a newer metamodel version when needed. It is also possible to check JSON schemas
in higher detail, see Metamodel Schemas.

Version 12 (since 4.1.0)

• Dropped support of deprecated wkhtmltopdf (for PDF, weasyprint is used instead).

• Changed several properties of Integration and IntegrationReply to optional (see Document Context).

Version 11 (since 3.20.0)

• Removed recommendedPackageId from template metadata and shortName together with color from formats.

150 Chapter 1. Structure of the Guide

https://weasyprint.org/

FAIR Wizard, Release 4.6

Version 10 (since 3.12.0)

• New possible value types for value questions: DateTimeQuestionValueType, TimeQuestionValueType,
EmailQuestionValueType, UrlQuestionValueType, and ColorQuestionValueType (no changes needed
in existing KM-specific templates).

Version 9 (since 3.10.0)

• If you are using integration object, the requestItemUrl is changed to itemUrl.

• Integrations now have type, where the new Widget Integration has a different fields than API Integration (see
schema).

Version 8 (since 3.8.0)

• Annotations and integration HTTP headers are changed from dict-like object with string-string key and value to
a list of string-string tuples. Be aware that now there can be more values with the same “key” but that is usually
unlikely.

Version 7 (since 3.7.0)

• Added description and project tags to the questionnaire object (if you do not need them, nothing has to be changed
in the template).

Version 6 (since 3.6.0)

• Integration item template replaced item name. In templates you probably need to rename for integrations the
property itemUrl to responseItemUrl.

Version 5 (since 3.5.0)

• All KM entities has now annotations (key-value dictionary). If you do not want to use those in your template, no
changes are required.

Version 4 (since 3.2.0)

• Levels are renamed into phases and are using UUIDs. Phases are as part of the KM in knowledgeModel.
entities of the context.

• Metrics are now also identified by UUID and part of the KM.

1.6. Development 151

FAIR Wizard, Release 4.6

Version 3 (since 2.12.0)

• Additional metadata about each replies has been added and structure of reply is changed (extra .value needed).
In case you are using filters such as reply_str_value no changes are needed.

• For integration reply, the type values are renamed IntegrationValue -> IntegrationType and PlainValue
-> PlainType for consistency.

Version 2 (since 2.6.0)

• Changed questionnaireReplies to use path-reply map and removed then redundant
questionnaireRepliesMap from document context.

• Replies for list question represented as list of UUIDs instead of size used for numeric indexing.

Version 1 (since 2.5.0)

• Initial version of metamodel, introduced in FAIR Wizard 2.5.0 as start of versioning.

1.6.3 Integration Questions

FAIR Wizard can be integrated with other services using so called integration question. The answer to that type of
question does not contain only the answer itself but also a link to that external resource (which can be done, for example,
using a persistent identifier). Therefore, these answers help clearly understand what the researchers use and promotes
interoperability.

Examples of such integrations that are used within Common DSW Knowledge Model is FAIRsharing or ROR.

There are two ways of how we can connect FAIR Wizard to these services:

• API - using an API provided by the external service to search for the results

• Widget - using a specialized widget implemented for the connection with the FAIR Wizard

Integration Question - API

Integration question can be connected to an external resource using its API. We can then search for the results from the
external service using the FAIR Wizard questionnaire interface. When we select an answer it is not only the text (such
as a name of the database), but also a link to the external service to the selected item. The whole flow is denoted in the
following diagram.

External Service Requirements

If we want to connect an external service using the API there are certain requirements for it to make the connection to
FAIR Wizard possible.

• Allows search using free text

– There must be a way to send a search phrase to the API so that it can filter the results based on it

• Returns a JSON response with a list of results

– The response must be JSON so FAIR Wizard can parse it

– There needs to be a JSON list where all the items matching the search query are

152 Chapter 1. Structure of the Guide

https://registry.fair-wizard.com/knowledge-models/dsw:root:latest
https://fairsharing.org
https://ror.org

FAIR Wizard, Release 4.6

Fig. 115: How integration question connected to, for example, FAIRsharing API works.
1.6. Development 153

FAIR Wizard, Release 4.6

• It is possible to construct a link to the selected item

– We also need to be able to construct the link to the item from the data we get in the response so we can
provide it with the answer

Configuration

The configuration is done in the knowledge model editor. First of all, we need to create a new integration and choose
its Type to be API. Then, there are some metadata, such as ID, Name, or Logo URL.

Request Configuration

In the Request section, we configure how to make an HTTP requests to the external service’s API. For that, we need
to configure the following (the specific values depends on how the API works):

• Request URL - what is the URL where we want to send search requests

• Request HTTP Method - what HTTP method should be used

• Request HTTP Headers - some headers might be needed, such as Accept: application/json to have a
correct response type

• Request HTTP Body - if we need to send some HTTP body

• Allow Empty Search - some APIs don’t work if we try to search with an empty string, turn this of it’s the case

There is a special property ${q} that we can use within those fields. The property represents the string that users type
to the questionnaire. So for example, we can write Request URL as:

http://example.com/api/search?q=${q}

Response Configuration

In the Response section, we configure how to process the JSON response from the external service. For that, we need
to configure the following:

• Response List Field - where in the JSON response is the list of items corresponding to the search query

• Response Item ID - what field represents an item ID in the returned JSON

• Response Item Template - how we want to present the result to the user

We can use Jinja2 templates (Ginger implementation) in Response Item ID and especially in Response Item Template
to make the response item look better.

Secrets and Other Properties

Sometimes, we might need to use some secrets (for example for authentication token), additional properties (such as
API URL if we want to use different one for testing and production), or basically any information that we do not want
to include in the knowledge model. In that case, we can define some properties in the FAIR Wizard settings.

We need to navigate to Administration → Settings → Knowledge Models and there is a field called Integration Config.
It is a YAML organized by the Integration ID at the top level and key value pairs for each property.

We can fill some properties in. So, for example, if the INtegration ID of our integration is ourIntegration we can write:

154 Chapter 1. Structure of the Guide

https://ginger.tobiasdammers.nl

FAIR Wizard, Release 4.6

ourIntegration:
authorizationToken: "abcd"
apiUrl: "http://example.com/api"

Then, in the configuration of our integration, we can use these properties in the request configuration, so for example
the Request URL can be:

${apiUrl}/search?q=${q}

And we can add a header such as:

Authorization: Bearer ${authorizationToken}

Note: These properties can be accessed only from the integration with matching ID.

Video Tutorial

We have the following video tutorial showing how to set up the integration question using API.

https://youtu.be/x-kx6ppVBo0

External Resources

• How to Configure Integration Question in FAIR Wizard

• How to Improve Integration Question Item Template in FAIR Wizard

• Ginger Documentation

Integration Question - Widget

Integration question can be connected to an external resource using a widget integration. When there is this type of
question, instead of writing an answer, researchers click on Select button. It will open the widget where they can pick
their answer and it is then sent back to the FAIR Wizard. The whole flow is denoted in the following diagram.

Configuration

The configuration is done in the knowledge model editor. First of all, we need to create a new integration and choose
its Type to be Widget. Then, there are some metadata, such as ID, Name, or Logo URL, as well as the Widget URL
which is the URL where the widget is deployed. The URL will be open in popup window when researchers click on
the Select button when filling in the questionnaire.

1.6. Development 155

https://youtu.be/x-kx6ppVBo0
https://fair-wizard.com/blog/how-to-configure-integration-question-in-fair-wizard
https://fair-wizard.com/blog/how-to-improve-integration-question-item-template-in-fair-wizard
https://ginger.tobiasdammers.nl

FAIR Wizard, Release 4.6

Fig. 116: How integration widget connected to, for example, DAISY works.

156 Chapter 1. Structure of the Guide

FAIR Wizard, Release 4.6

Implementation

The actual implementation is done using DSW Integration SDK. We recommend reading the readme and explore the
examples to understand how it works.

1.6.4 Project Importers Development

Warning: Project importers are an experimental feature.

Project importers can be used to import the data from an external resource to FAIR Wizard questionnaire. The importer
creates the replies based on the data, therefore it needs to know the structure of the knowledge model it is compatible
with.

FAIR Wizard comes with two importers already implemented.

• Replies Importer

• maDMP Importer

Note: More importers can be added in the future. Please contact the development team if you are interested in adding
a new importer.

1.6.5 Submission Service

As administrators, we can configure submission services using Document Submission Settings. The configured HTTP
request is then used when a user clicks Submit for an allowed document for submission and selected the desired submis-
sion service. The document is sent as a body of the request (or as multipart, based on the configuration) to the external
service that should process it and return HTTP response with status code, and possibly also the Location header and
some textual message.

Usually, we will need a simple proxy service to be developed that will accommodate this to API of some information
system, database, storage, or other service. For example, such a proxy service will be able to receive the JSON docu-
ments from FAIR Wizard, retrieve additional information through FAIR Wizard API as needed, transform it to some
other resulting artifact and store it in some local database that is used by other systems.

Example Submission Services

There are some submission services already implemented and can be used to check the implementation possibilities:

• Dummy Submission Service which just based on the headers returns example result or error.

• Email Submission Service sends an email through SMTP connection with the submitted document attached (or
processed in case of JSON).

• Nanopub Submission Service allows to store a nanopublication (in RDF TRiG format) in the distributed network
of nanopublication servers.

1.6. Development 157

https://github.com/ds-wizard/dsw-integration-sdk
mailto:info@codevence.com
https://github.com/ds-wizard/dummy-submission-service
https://github.com/ds-wizard/email-submission-service
https://github.com/ds-wizard/nanopub-submission-service
https://github.com/Nanopublication

FAIR Wizard, Release 4.6

1.7 Miscellaneous

Additional information related to FAIR Wizard that might be useful.

1.7.1 FAIR Wizard Registry

FAIR Wizard Registry is a place where we publish knowledge models, document templates and locales. It is very easy
to get those into a FAIR Wizard and use.

Fig. 117: FAIR Wizard Registry with a list of knowledge models.

Registry allows us to:

• Import knowledge models from FAIR Wizard Registry

• Import document templates from FAIR Wizard Registry

• Import locales from FAIR Wizard Registry

158 Chapter 1. Structure of the Guide

https://registry.fair-wizard.com/

FAIR Wizard, Release 4.6

1.7.2 Markdown Cheatsheet

Various text fields in FAIR Wizard can be formatted by using Markdown formatting language. Here you can get a basic
overview of what can be achieved with Markdown.

Basic Syntax

These are the basic Markdown elements supported by all applications.

Extended Syntax

These elements extending the basic syntax are supported in FAIR Wizard.

1.7. Miscellaneous 159

	Structure of the Guide
	Introduction
	Overview
	Data Management Planner
	Knowledge Model
	Document Template
	Questionnaire
	Document

	Admin Center
	Users
	Imports
	Audit Log

	Integration Hub
	Value Integrations

	Reporting

	Knowledge Model
	Knowledge Model Structure
	Knowledge Model
	Chapter
	Question
	Options Question
	List Question
	Value Question
	Integration Question
	Multi-Choice Question

	Answer
	Choice
	Reference
	URL Reference
	Book Reference
	Resource Page Reference

	Expert
	Metric
	Phase
	Question Tag
	Integration
	API Integration
	Widget Integration

	Annotations

	Knowledge Model Customizations

	Document Template
	Project
	Questionnaire
	Documents

	Data Management Planner
	Knowledge Models
	Knowledge Model List
	Knowledge Model Import
	From FAIR Wizard Registry
	From file

	Knowledge Model Detail
	Knowledge Model Preview

	Knowledge Model Editors
	Create Knowledge Model Editor
	Knowledge Model Editor
	Knowledge Model
	Navigation
	Editors
	Warnings
	Phases
	Question Tags
	Preview
	Settings
	Publish

	Knowledge Model Migration
	Creating a Knowledge Model Migration
	Knowledge Model Migration
	Cancelling a Knowledge Model Migration
	Finishing a Knowledge Model Migration

	Document Templates
	Document Template List
	Document Template Import
	From FAIR Wizard Registry
	From file

	Document Template Detail

	Document Template Editors
	Create Document Template Editor
	Document Template Editor
	Files
	Preview
	Settings
	General
	Knowledge Models
	Formats
	Publish

	Projects
	Project List
	Create Project
	From Project Template
	Custom

	Project Detail
	Questionnaire
	Current Phase
	Chapters
	Questionnaire Area
	Options Question
	List Question
	Value Question
	Integration Question
	Multi-Choice Question
	View settings
	Import answers
	Warnings
	Comments
	Add Comment
	View Comments
	Comment Threads
	Editor Notes
	TODOs
	Version History
	Name a Version
	View Questionnaire in a Version
	Create Document from an Older Version
	Revert to an Older Version
	Metrics
	Preview
	Default Document Template Not Set
	Download Preview
	Documents
	New document
	Document Submission
	Settings
	Default Document Template
	Project Template
	Knowledge Model
	Danger Zone
	Sharing
	Users
	Visible by all other logged-in users
	Public link

	Project Migration
	Creating a Project Migration
	Project Migration
	Cancelling a Project Migration
	Finishing a Project Migration

	Project Templates
	Sharing the Project Templates
	External Resources

	Project Importers

	Documents
	Administration
	Settings
	System Settings
	Organization Settings

	User Interface Settings
	Dashboard Settings
	Dashboard Style
	Announcements
	Menu Settings
	Custom Menu Links

	Content Settings
	Knowledge Models Settings
	Public Knowledge Models
	Integration Config
	Projects Settings
	Project Visibility
	Project Sharing
	Anonymous Projects
	Feedback
	Project Tagging
	Document Submission Settings

	Info
	Usage

	Locales
	Import Locale
	From FAIR Wizard Registry
	From file

	Create Locale
	Locale Detail

	Profile
	User Settings
	API Keys
	App Keys
	Active Sessions
	Submission Settings

	Change Language

	Admin Center
	Users
	Invite User
	User Detail
	User Roles

	User Groups
	Create
	User Group Detail

	Import
	Users Import
	Projects Import

	Audit Log
	Settings
	System Settings
	Privacy & Support Settings
	Support

	Users Settings

	Authentication Settings
	Internal Settings
	Open ID Settings
	SAML Settings

	User Interface Settings
	Dashboard and Login Screen Settings
	Login Info
	Sidebar Login Info
	Announcements

	Look and Feel Settings

	Info
	Plans
	Usage

	Profile
	Edit Profile
	Change Password
	API Keys
	Active Sessions

	Integration Hub
	Value Integrations
	Create
	Detail

	Reporting
	Projects
	Users

	Development
	Metamodel Schemas
	KM Package (.km file)
	Document Context
	Template (.json file)

	Document Template Development
	Examples
	Document Context
	Objectified Document Context
	Diagram
	Entities
	DocumentContext
	ContextConfig
	Document
	Organization
	Package
	Questionnaire
	QuestionnaireVersion
	User
	SimpleAuthor
	Report
	ReportItem
	ReportIndication
	ReportMetric
	KnowledgeModel
	KnowledgeModelEntities
	Chapter
	Question
	ValueQuestion
	IntegrationQuestion
	OptionsQuestion
	MultiChoiceQuestion
	ListQuestion
	Answer
	MetricMeasure
	Choice
	Expert
	Reference
	URLReference
	ResourcePageReference
	Metric
	Phase
	Integration
	Tag
	RepliesContainer
	Reply
	AnswerReply
	MultiChoiceReply
	StringReply
	ItemListReply
	IntegrationReply

	Template Development Kit
	Video Tutorial
	Installation
	Commands
	Environment variables and .env file

	Document Template Specification
	Specification Structure
	Package Filters
	Formats
	Steps
	Step: archive
	Input
	Output
	Options
	Notes
	Example
	Step: enrich-docx
	Input
	Output
	Options
	Notes
	Example
	Step: excel
	Input
	Properties
	Options
	Definitions
	Formats
	Charts
	sheets
	Chartsheet
	Worksheet
	Inserting data
	Inserting other elements
	Header, Footer, Images
	vba_projects
	Output
	Options
	Notes
	Example
	Step: jinja
	Input
	Output
	Options
	Template (Jinja2)
	Variables
	Filters
	Builtin Filters
	Value Conversion
	Reply Helpers
	Special
	Tests
	Builtin Tests
	Custom Tests
	Notes
	Example
	Step: json
	Input
	Output
	Options
	Example
	Step: pandoc
	Input
	Output
	Options
	Notes
	Example
	Step: rdflib-convert
	Input
	Output
	Options
	Example
	Step: weasyprint
	Input
	Output
	Options
	Notes
	Example
	TDK Config
	Template Metamodels
	Version 12 (since 4.1.0)
	Version 11 (since 3.20.0)
	Version 10 (since 3.12.0)
	Version 9 (since 3.10.0)
	Version 8 (since 3.8.0)
	Version 7 (since 3.7.0)
	Version 6 (since 3.6.0)
	Version 5 (since 3.5.0)
	Version 4 (since 3.2.0)
	Version 3 (since 2.12.0)
	Version 2 (since 2.6.0)
	Version 1 (since 2.5.0)

	Integration Questions
	Integration Question - API
	External Service Requirements
	Configuration
	Request Configuration
	Response Configuration
	Secrets and Other Properties

	Video Tutorial
	External Resources

	Integration Question - Widget
	Configuration
	Implementation

	Project Importers Development
	Submission Service
	Example Submission Services

	Miscellaneous
	FAIR Wizard Registry
	Markdown Cheatsheet
	Basic Syntax
	Extended Syntax

